Myhill-nerode theorem, Theory of Computation

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes the same language will have the same number of states and the same edges, differing in no more than the particular names it gives the states. If we apply this to A and L(A) is empty then we will obtain a DFA that is isomorphic to any minimal DFA that recognizes ∅. In particular it will contain just a single state and that state will not be an accepting state. (Being a DFA, that state will have a self-edge for every symbol in the alphabet.) It's pretty easy to check if this is the case for the minimized version of A. We return "True" iff it is.

Posted Date: 3/21/2013 1:52:04 AM | Location : United States







Related Discussions:- Myhill-nerode theorem, Assignment Help, Ask Question on Myhill-nerode theorem, Get Answer, Expert's Help, Myhill-nerode theorem Discussions

Write discussion on Myhill-nerode theorem
Your posts are moderated
Related Questions
What are the benefits of using work breakdown structure, Project Management

how to write program Minimum Cost Calculation - Vogel Approximation Method(VAM

. On July 1, 2010, Harris Co. issued 6,000 bonds at $1,000 each. The bonds paid interest semiannually at 5%. The bonds had a term of 20 years. At the time of issuance, the market r

prove following function is turing computable? f(m)={m-2,if m>2, {1,if

De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th


Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(


Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1