Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length greater than n (where n is the number of states in the minimal DFA recognizing this language and, therefore, no greater than the number of states in this particular DFA) can be split into three components uvw, where |v| > 0 and uviw ∈ L(A) for all i ≥ 0. One consequence of this is that L(A) will be non-empty iff it includes some string of length strictly less than n. To see this, assume (for contradiction) that no string in L(A) was of length less than n. Let x be a minimal length string in L(A), so no string in A is shorter than x. By our assumption |x| ≥ n. Then the pumping lemma applies and x must have the form uvw, etc. But then uw ∈ L(A) also and |uw| < |uvw| contradicting the choice of x as a minimal length string. Hence the shortest string in L(A), whatever it is, must have length strictly less than n. To decide Emptiness, then, all we need to do is to systematically generate all strings in Σ∗ with length less than n (the de?nition of Σ∗ provides the foundation of an algorithm for doing this) and check to see if A accepts any of them. We return "True" iff it accepts at least one. (Thus, the Emptiness Problem reduces to the Recognition Problem.)
Theorem (Finiteness) The Finiteness Problem for Regular Languages is decidable.
De?nition Instantaneous Description of an FSA: An instantaneous description (ID) of a FSA A = (Q,Σ, T, q 0 , F) is a pair (q,w) ∈ Q×Σ* , where q the current state and w is the p
Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of
Explain the Chomsky's classification of grammar
proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .
The key thing about the Suffx Substitution Closure property is that it does not make any explicit reference to the automaton that recognizes the language. While the argument tha
build a TM that enumerate even set of even length string over a
design a turing machine that accepts the language which consists of even number of zero''s and even number of one''s?
As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua
PROPERTIES OF Ardens therom
De?nition Deterministic Finite State Automaton: For any state set Q and alphabet Σ, both ?nite, a ?nite state automaton (FSA) over Q and Σ is a ?ve-tuple (Q,Σ, T, q 0 , F), w
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd