Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length greater than n (where n is the number of states in the minimal DFA recognizing this language and, therefore, no greater than the number of states in this particular DFA) can be split into three components uvw, where |v| > 0 and uviw ∈ L(A) for all i ≥ 0. One consequence of this is that L(A) will be non-empty iff it includes some string of length strictly less than n. To see this, assume (for contradiction) that no string in L(A) was of length less than n. Let x be a minimal length string in L(A), so no string in A is shorter than x. By our assumption |x| ≥ n. Then the pumping lemma applies and x must have the form uvw, etc. But then uw ∈ L(A) also and |uw| < |uvw| contradicting the choice of x as a minimal length string. Hence the shortest string in L(A), whatever it is, must have length strictly less than n. To decide Emptiness, then, all we need to do is to systematically generate all strings in Σ∗ with length less than n (the de?nition of Σ∗ provides the foundation of an algorithm for doing this) and check to see if A accepts any of them. We return "True" iff it accepts at least one. (Thus, the Emptiness Problem reduces to the Recognition Problem.)
Theorem (Finiteness) The Finiteness Problem for Regular Languages is decidable.
PROPERTIES OF Ardens therom
Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.
wht is pumping lema
how to convert a grammar into GNF
When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program
A Turing machine is a theoretical computing machine made-up by Alan Turing (1937) to serve as an idealized model for mathematical calculation. A Turing machine having of a line of
Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give
DEGENERATE OF THE INITIAL SOLUTION
Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators le
proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd