Strictly local generation automaton, Theory of Computation

Assignment Help:

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the

automaton as an inexhaustible set of tiles labeled with the pairs of symbols, infinitely many instances of each type. The generator starts by selecting any tile labeled with 'x' on its left half. It then proceeds by selecting any tile for which the left half symbol matches the symbol on the right half of the previously selected tile and placing it with its left half overlapping the right half of that previous tile. In this way, the sequence of tiles grows until some tile with 'x' on its right half is placed. The generated string is the sequence of exposed symbols, not including the beginning and end symbols. Generation is non-deterministic-at each step the choice of tile is restricted only by the right symbol of the previous tile. A derivation of the generator is just the sequence of choices it makes in assembling a string, a sequence of pairs of symbols. The language generated by the generator is the set of all strings assembled by any of its derivations.

It should be clear that every string assembled by a derivation of the generator will be accepted by the automaton: the computation of the automaton will check the same sequence of pairs as the derivation of the generator uses and each of those pairs will be in the lookup table, hence, the computation will accept. Similarly it should be clear that every string accepted by a computation of the automaton will be assembled by the corresponding derivation of the generator.


Related Discussions:- Strictly local generation automaton

Turing machine, Can v find the given number is palindrome or not using turi...

Can v find the given number is palindrome or not using turing machine

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Sketch an algorithm for recognizing language, Suppose A = (Σ, T) is an SL 2...

Suppose A = (Σ, T) is an SL 2 automaton. Sketch an algorithm for recognizing L(A) by, in essence, implementing the automaton. Your algorithm should work with the particular automa

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Closure properties to prove regularity, The fact that regular languages are...

The fact that regular languages are closed under Boolean operations simpli?es the process of establishing regularity of languages; in essence we can augment the regular operations

Operations on strictly local languages, The class of Strictly Local Languag...

The class of Strictly Local Languages (in general) is closed under • intersection but is not closed under • union • complement • concatenation • Kleene- and positive

Finite languages and strictly local languages, Theorem The class of ?nite l...

Theorem The class of ?nite languages is a proper subclass of SL. Note that the class of ?nite languages is closed under union and concatenation but SL is not closed under either. N

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd