Computation and languages, Theory of Computation

Assignment Help:

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is their sum. Two problems of particular interest in Computer Science, which you have probably encountered previously, are the Traveling Salesperson Problem (TSP) and the Halting Problem. In TSP one is given a list of distances between some number of cities and is asked to ?nd the shortest route that visits each city once and returns to the start. In the Halting Problem, one is given a program and some appropriate input and asked to decide whether the program, when run on that input, loops forever or halts. Note that, in each of the cases the statement of the problem doesn't give us the actual values we need to provide the result for, but rather just tells us what kind of objects they are. A set of actual values for a problem is called an instance of the problem. (So, in this terminology, all the homework problems you did throughout school were not problems but were, rather, instances of problems.)

A problem, then, speci?es what an instance is, i.e., what the input is, and how the solution, or output, must be related to the that input.
There are a number of things one might seek to know about a problem, among them:

• Can it be solved algorithmically; is there a de?nite procedure that solves any instance of the problem in a ?nite amount of time? Inother words, is it computable. Not all problems are computable; the halting problem is the classic example of one that is not.

• How hard is it to solve? What kind of resources are needed and how much of those resources is required? Again, some problems are harder than others. TSP is an example of a frustrating class of problems that have no known e?cient solution, but which have never been proven to be necessarily hard.


Related Discussions:- Computation and languages

Operator p, implementation of operator precedence grammer

implementation of operator precedence grammer

Concatenation, We saw earlier that LT is not closed under concatenation. If...

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while

Pumping lemma constant, a) Let n be the pumping lemma constant. Then if L i...

a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le

Automaton for finite languages, We can then specify any language in the cla...

We can then specify any language in the class of languages by specifying a particular automaton in the class of automata. We do that by specifying values for the parameters of the

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Prism algorithm, what exactly is this and how is it implemented and how to ...

what exactly is this and how is it implemented and how to prove its correctness, completeness...

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

REGULAR GRAMMAR, Find the Regular Grammar for the following Regular Express...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Computation and languages, When we study computability we are studying prob...

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is

Transition and path functions, When an FSA is deterministic the set of trip...

When an FSA is deterministic the set of triples encoding its edges represents a relation that is functional in its ?rst and third components: for every q and σ there is exactly one

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd