Computation and languages, Theory of Computation

Assignment Help:

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is their sum. Two problems of particular interest in Computer Science, which you have probably encountered previously, are the Traveling Salesperson Problem (TSP) and the Halting Problem. In TSP one is given a list of distances between some number of cities and is asked to ?nd the shortest route that visits each city once and returns to the start. In the Halting Problem, one is given a program and some appropriate input and asked to decide whether the program, when run on that input, loops forever or halts. Note that, in each of the cases the statement of the problem doesn't give us the actual values we need to provide the result for, but rather just tells us what kind of objects they are. A set of actual values for a problem is called an instance of the problem. (So, in this terminology, all the homework problems you did throughout school were not problems but were, rather, instances of problems.)

A problem, then, speci?es what an instance is, i.e., what the input is, and how the solution, or output, must be related to the that input.
There are a number of things one might seek to know about a problem, among them:

• Can it be solved algorithmically; is there a de?nite procedure that solves any instance of the problem in a ?nite amount of time? Inother words, is it computable. Not all problems are computable; the halting problem is the classic example of one that is not.

• How hard is it to solve? What kind of resources are needed and how much of those resources is required? Again, some problems are harder than others. TSP is an example of a frustrating class of problems that have no known e?cient solution, but which have never been proven to be necessarily hard.


Related Discussions:- Computation and languages

Theory of computation, Computations are deliberate for processing informati...

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

Differentiate between dfa and nfa, Differentiate between DFA and NFA. Conve...

Differentiate between DFA and NFA. Convert the following Regular Expression into DFA. (0+1)*(01*+10*)*(0+1)*. Also write a regular grammar for this DFA.

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Give the acyclic paths through your graph, Give the Myhill graph of your au...

Give the Myhill graph of your automaton. (You may use a single node to represent the entire set of symbols of the English alphabet, another to represent the entire set of decima

Prove the arden''s theorem, State and Prove the Arden's theorem for Regular...

State and Prove the Arden's theorem for Regular Expression

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

TRANSPORTATION, DEGENERATE OF THE INITIAL SOLUTION

DEGENERATE OF THE INITIAL SOLUTION

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd