Computation and languages, Theory of Computation

Assignment Help:

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is their sum. Two problems of particular interest in Computer Science, which you have probably encountered previously, are the Traveling Salesperson Problem (TSP) and the Halting Problem. In TSP one is given a list of distances between some number of cities and is asked to ?nd the shortest route that visits each city once and returns to the start. In the Halting Problem, one is given a program and some appropriate input and asked to decide whether the program, when run on that input, loops forever or halts. Note that, in each of the cases the statement of the problem doesn't give us the actual values we need to provide the result for, but rather just tells us what kind of objects they are. A set of actual values for a problem is called an instance of the problem. (So, in this terminology, all the homework problems you did throughout school were not problems but were, rather, instances of problems.)

A problem, then, speci?es what an instance is, i.e., what the input is, and how the solution, or output, must be related to the that input.
There are a number of things one might seek to know about a problem, among them:

• Can it be solved algorithmically; is there a de?nite procedure that solves any instance of the problem in a ?nite amount of time? Inother words, is it computable. Not all problems are computable; the halting problem is the classic example of one that is not.

• How hard is it to solve? What kind of resources are needed and how much of those resources is required? Again, some problems are harder than others. TSP is an example of a frustrating class of problems that have no known e?cient solution, but which have never been proven to be necessarily hard.


Related Discussions:- Computation and languages

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Class of local languages is not closed under union, Both L 1 and L 2 are ...

Both L 1 and L 2 are SL 2 . (You should verify this by thinking about what the automata look like.) We claim that L 1 ∪ L 2 ∈ SL 2 . To see this, suppose, by way of con

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Finite-state automaton, Paths leading to regions B, C and E are paths which...

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B no

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Tuning machine, design a tuning machine for penidrome

design a tuning machine for penidrome

Operator p, implementation of operator precedence grammer

implementation of operator precedence grammer

Strictly local generation automaton, Another way of interpreting a strictly...

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd