Computation and languages, Theory of Computation

Assignment Help:

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is their sum. Two problems of particular interest in Computer Science, which you have probably encountered previously, are the Traveling Salesperson Problem (TSP) and the Halting Problem. In TSP one is given a list of distances between some number of cities and is asked to ?nd the shortest route that visits each city once and returns to the start. In the Halting Problem, one is given a program and some appropriate input and asked to decide whether the program, when run on that input, loops forever or halts. Note that, in each of the cases the statement of the problem doesn't give us the actual values we need to provide the result for, but rather just tells us what kind of objects they are. A set of actual values for a problem is called an instance of the problem. (So, in this terminology, all the homework problems you did throughout school were not problems but were, rather, instances of problems.)

A problem, then, speci?es what an instance is, i.e., what the input is, and how the solution, or output, must be related to the that input.
There are a number of things one might seek to know about a problem, among them:

• Can it be solved algorithmically; is there a de?nite procedure that solves any instance of the problem in a ?nite amount of time? Inother words, is it computable. Not all problems are computable; the halting problem is the classic example of one that is not.

• How hard is it to solve? What kind of resources are needed and how much of those resources is required? Again, some problems are harder than others. TSP is an example of a frustrating class of problems that have no known e?cient solution, but which have never been proven to be necessarily hard.


Related Discussions:- Computation and languages

Complement - operations on languages, The fact that SL 2 is closed under i...

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Suffix substitution , Exercise Show, using Suffix Substitution Closure, tha...

Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL

Construct a regular expression, Given any NFA A, we will construct a regula...

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Finite state automata, Since the signi?cance of the states represented by t...

Since the signi?cance of the states represented by the nodes of these transition graphs is arbitrary, we will allow ourselves to use any ?nite set (such as {A,B,C,D,E, F,G,H} or ev

Suffix substitution closure, Our primary concern is to obtain a clear chara...

Our primary concern is to obtain a clear characterization of which languages are recognizable by strictly local automata and which aren't. The view of SL2 automata as generators le

Transition and path functions, When an FSA is deterministic the set of trip...

When an FSA is deterministic the set of triples encoding its edges represents a relation that is functional in its ?rst and third components: for every q and σ there is exactly one

Construct a recognizer, Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG t...

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

Decision Theroy, spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8...

spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8%, l= 5% The organization estimates that 75% of all messages it receives are spam messages. If the cost of not blocking a

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd