Positiveness problem - decision problems, Theory of Computation

Assignment Help:

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable.

"Positiveness Problem".

Note that each instance of the Positiveness Problem is a regular language. (Each instance itself is, not the set of solved instances.) Clearly, we cannot take the set of strings in the language to be our instance, (since, in general, this is likely to be in?nite in size. But we have at least two means of specifying any regular language using ?nite objects: we can give a Finite State Automaton that recognizes the language as a ?ve-tuple, each component of which is ?nite, (or, equivalently, the transition graph in some other form) or we can give a regular expression. Since we have algorithms for converting back and forth between these two forms, we can choose whichever is convenient for us. In this case, lets assume we are given the ?ve-tuple. Since we have an algorithm for converting NFAs to DFAs as well, we can also assume, without loss of generality, that the automaton is a DFA.

A solution to the Positiveness Problem is just "True" or "False". It is a decision problem a problem of deciding whether the given instance exhibits a particular property. (We are familiar with this sort of problem. They are just our "checking problems"-all our automata are models of algorithms for decision problems.) So the Positiveness Problem, then, is just the problem of identifying the set of Finite State Automata that do not accept the empty string. Note that we are not asking if this set is regular, although we could. (What do you think the answer would be?) We are asking if there is any algorithm at all for solving it.


Related Discussions:- Positiveness problem - decision problems

Brain game, If the first three words are the boys down,what are the last th...

If the first three words are the boys down,what are the last three words??

Instantaneous description of an fsa, De?nition Instantaneous Description of...

De?nition Instantaneous Description of an FSA: An instantaneous description (ID) of a FSA A = (Q,Σ, T, q 0 , F) is a pair (q,w) ∈ Q×Σ* , where q the current state and w is the p

Myhill-nerode theorem, This close relationship between the SL2 languages an...

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

Pumping lemma, For every regular language there is a constant n depending o...

For every regular language there is a constant n depending only on L such that, for all strings x ∈ L if |x| ≥ n then there are strings u, v and w such that 1. x = uvw, 2. |u

Local myhill graphs, Myhill graphs also generalize to the SLk case. The k-f...

Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav

Local suffix substitution closure, The k-local Myhill graphs provide an eas...

The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo

Construct a regular expression, Given any NFA A, we will construct a regula...

Given any NFA A, we will construct a regular expression denoting L(A) by means of an expression graph, a generalization of NFA transition graphs in which the edges are labeled with

Mapping reducibility, (c) Can you say that B is decidable? (d) If you someh...

(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd