Positiveness problem - decision problems, Theory of Computation

Assignment Help:

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable.

"Positiveness Problem".

Note that each instance of the Positiveness Problem is a regular language. (Each instance itself is, not the set of solved instances.) Clearly, we cannot take the set of strings in the language to be our instance, (since, in general, this is likely to be in?nite in size. But we have at least two means of specifying any regular language using ?nite objects: we can give a Finite State Automaton that recognizes the language as a ?ve-tuple, each component of which is ?nite, (or, equivalently, the transition graph in some other form) or we can give a regular expression. Since we have algorithms for converting back and forth between these two forms, we can choose whichever is convenient for us. In this case, lets assume we are given the ?ve-tuple. Since we have an algorithm for converting NFAs to DFAs as well, we can also assume, without loss of generality, that the automaton is a DFA.

A solution to the Positiveness Problem is just "True" or "False". It is a decision problem a problem of deciding whether the given instance exhibits a particular property. (We are familiar with this sort of problem. They are just our "checking problems"-all our automata are models of algorithms for decision problems.) So the Positiveness Problem, then, is just the problem of identifying the set of Finite State Automata that do not accept the empty string. Note that we are not asking if this set is regular, although we could. (What do you think the answer would be?) We are asking if there is any algorithm at all for solving it.


Related Discussions:- Positiveness problem - decision problems

Complement - operations on languages, The fact that SL 2 is closed under i...

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Equivalence of nfas and dfas, In general non-determinism, by introducing a ...

In general non-determinism, by introducing a degree of parallelism, may increase the accepting power of a model of computation. But if we subject NFAs to the same sort of analysis

Equivalence of nfas, It is not hard to see that ε-transitions do not add to...

It is not hard to see that ε-transitions do not add to the accepting power of the model. The underlying idea is that whenever an ID (q, σ  v) directly computes another (p, v) via

Regular languages, LTO was the closure of LT under concatenation and Boolea...

LTO was the closure of LT under concatenation and Boolean operations which turned out to be identical to SF, the closure of the ?nite languages under union, concatenation and compl

Non - sl languages, Application of the general suffix substitution closure ...

Application of the general suffix substitution closure theorem is slightly more complicated than application of the specific k-local versions. In the specific versions, all we had

Production, How useful is production function in production planning?

How useful is production function in production planning?

Binary form and chomsky normal form, Normal forms are important because the...

Normal forms are important because they give us a 'standard' way of rewriting and allow us to compare two apparently different grammars G1  and G2. The two grammars can be shown to

Myhill-nerode theorem, This close relationship between the SL2 languages an...

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd