Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable.
"Positiveness Problem".
Note that each instance of the Positiveness Problem is a regular language. (Each instance itself is, not the set of solved instances.) Clearly, we cannot take the set of strings in the language to be our instance, (since, in general, this is likely to be in?nite in size. But we have at least two means of specifying any regular language using ?nite objects: we can give a Finite State Automaton that recognizes the language as a ?ve-tuple, each component of which is ?nite, (or, equivalently, the transition graph in some other form) or we can give a regular expression. Since we have algorithms for converting back and forth between these two forms, we can choose whichever is convenient for us. In this case, lets assume we are given the ?ve-tuple. Since we have an algorithm for converting NFAs to DFAs as well, we can also assume, without loss of generality, that the automaton is a DFA.
A solution to the Positiveness Problem is just "True" or "False". It is a decision problem a problem of deciding whether the given instance exhibits a particular property. (We are familiar with this sort of problem. They are just our "checking problems"-all our automata are models of algorithms for decision problems.) So the Positiveness Problem, then, is just the problem of identifying the set of Finite State Automata that do not accept the empty string. Note that we are not asking if this set is regular, although we could. (What do you think the answer would be?) We are asking if there is any algorithm at all for solving it.
In general non-determinism, by introducing a degree of parallelism, may increase the accepting power of a model of computation. But if we subject NFAs to the same sort of analysis
Differentiate between DFA and NFA. Convert the following Regular Expression into DFA. (0+1)*(01*+10*)*(0+1)*. Also write a regular grammar for this DFA.
a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le
When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is
Rubber shortnote
let G=(V,T,S,P) where V={a,b,A,B,S}, T={a,b},S the start symbol and P={S->Aba, A->BB, B->ab,AB->b} 1.show the derivation sentence for the string ababba 2. find a sentential form
program in C++ of Arden''s Theorem
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea
how many pendulum swings will it take to walk across the classroom?
Proof (sketch): Suppose L 1 and L 2 are recognizable. Then there are DFAs A 1 = (Q,Σ, T 1 , q 0 , F 1 ) and A 2 = (P,Σ, T 2 , p 0 , F 2 ) such that L 1 = L(A 1 ) and L 2 = L(
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd