Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The Emptiness Problem is the problem of deciding if a given regular language is empty (= ∅).
Theorem 4 (Emptiness) The Emptiness Problem for Regular Languages is decidable.
Proof: We'll sketch three different algorithms for deciding the Emptiness Problem, given some DFA A = (Q,Σ, T, q0, F).
(Emptiness 1) A string w is in L(A) iff it labels a path through the transition graph of A from q0 to an accepting state. Thus, the language will be non-empty iff there is some such path. So the question of Emptiness reduces to the question of connectivity: the language recognized by A is empty iff there is no accepting state in the connected component of its transition graph that is rooted at q0. The problem of determining connected components of directed graphs is algorithmically solvable,by Depth-First Search, for instance (and solvable in time linear in the number of nodes). So, given A, we just do a depth-?rst search of the transition graph rooted at the start state keeping track of whether we encounter any accepting state. We return "True" iff we ?nd none.
Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B no
can you plz help with some project ideas relatede to DFA or NFA or anything
All that distinguishes the de?nition of the class of Regular languages from that of the class of Star-Free languages is that the former is closed under Kleene closure while the lat
phases of operational reaserch
how to write program Minimum Cost Calculation - Vogel Approximation Method(VAM
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn
i have research method project and i meef to make prposal with topic. If this service here please help me
The k-local Myhill graphs provide an easy means to generalize the suffix substitution closure property for the strictly k-local languages. Lemma (k-Local Suffix Substitution Clo
what is a bus and draw a single bus structure
explain turing machine .
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd