First model of computation, Theory of Computation

Assignment Help:

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explicit instruction to clear.) Limit your program to a single unsigned integer variable, and limit your methods of accessing it to something like inc(i), dec(i) and a predicate zero?(i) which returns true i? i = 0. This integer has unbounded precision-it can range over the entire set of natural numbers-so you never have to worry about your counter over?owing. It is, however, restricted to only the natural numbers-it cannot go negative, so you cannot decrement past zero.

(a) Sketch an algorithm to recognize the language: {aibi| i ≥ 0}. This is the set of strings consisting of zero or more ‘a's followed by exactly the same number of ‘b's.

(b) Can you do this within the ?rst model of computation? Either sketch an algorithm to do it, or make an informal argument thatit can't be  done.

(c) Give an informal argument that one can't recognize the language: {aibici| i ≥ 0} within this second model of computation (i.e, with
a single counter)


Related Discussions:- First model of computation

Numerical integration, what problems are tackled under numerical integratio...

what problems are tackled under numerical integration

Sketch an algorithm to recognize the language, First model: Computer has a ...

First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-by

Concatenation, We saw earlier that LT is not closed under concatenation. If...

We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while

Positiveness problem - decision problems, For example, the question of whet...

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that

Overview of dfa, Explain Theory of Computation ,Overview of DFA,NFA, CFG, P...

Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For

Gdtr, What is the purpose of GDTR?

What is the purpose of GDTR?

Language accepted by a nfa, The language accepted by a NFA A = (Q,Σ, δ, q 0...

The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Operator p, implementation of operator precedence grammer

implementation of operator precedence grammer

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd