Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explicit instruction to clear.) Limit your program to a single unsigned integer variable, and limit your methods of accessing it to something like inc(i), dec(i) and a predicate zero?(i) which returns true i? i = 0. This integer has unbounded precision-it can range over the entire set of natural numbers-so you never have to worry about your counter over?owing. It is, however, restricted to only the natural numbers-it cannot go negative, so you cannot decrement past zero.
(a) Sketch an algorithm to recognize the language: {aibi| i ≥ 0}. This is the set of strings consisting of zero or more ‘a's followed by exactly the same number of ‘b's.
(b) Can you do this within the ?rst model of computation? Either sketch an algorithm to do it, or make an informal argument thatit can't be done.
(c) Give an informal argument that one can't recognize the language: {aibici| i ≥ 0} within this second model of computation (i.e, witha single counter)
mmmm
Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph
Define the following concept with an example: a. Ambiguity in CFG b. Push-Down Automata c. Turing Machine
DEGENERATE OF THE INITIAL SOLUTION
The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea
Theorem The class of ?nite languages is a proper subclass of SL. Note that the class of ?nite languages is closed under union and concatenation but SL is not closed under either. N
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn
Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .
So we have that every language that can be constructed from SL languages using Boolean operations and concatenation (that is, every language in LTO) is recognizable but there are r
The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd