First model of computation, Theory of Computation

Assignment Help:

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explicit instruction to clear.) Limit your program to a single unsigned integer variable, and limit your methods of accessing it to something like inc(i), dec(i) and a predicate zero?(i) which returns true i? i = 0. This integer has unbounded precision-it can range over the entire set of natural numbers-so you never have to worry about your counter over?owing. It is, however, restricted to only the natural numbers-it cannot go negative, so you cannot decrement past zero.

(a) Sketch an algorithm to recognize the language: {aibi| i ≥ 0}. This is the set of strings consisting of zero or more ‘a's followed by exactly the same number of ‘b's.

(b) Can you do this within the ?rst model of computation? Either sketch an algorithm to do it, or make an informal argument thatit can't be  done.

(c) Give an informal argument that one can't recognize the language: {aibici| i ≥ 0} within this second model of computation (i.e, with
a single counter)


Related Discussions:- First model of computation

What is pumping lemma for regular sets, State & prove pumping lemma for reg...

State & prove pumping lemma for regular set. Show that for the language L={ap |p is a prime} is not regular

Moore machine, Construct a Moore machine to convert a binary string of radi...

Construct a Moore machine to convert a binary string of radix 4.

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Numerical integration, what problems are tackled under numerical integratio...

what problems are tackled under numerical integration

DFA, designing DFA

designing DFA

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Formal languages and grammar, The universe of strings is a very useful medi...

The universe of strings is a very useful medium for the representation of information as long as there exists a function that provides the interpretation for the information carrie

Kleene closure, One might assume that non-closure under concatenation would...

One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd