Automata and compiler, Theory of Computation

Assignment Help:

Automata and Compiler

(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.

(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c

(2.1) Draw a syntax chart for this grammar. [5]

(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]

(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.

const a=75, b=55;

var x, y;

procedure gcd;

var w;

begin

if y>0 then begin

w:=y;

y:=x ? (x/y)*y;

x:=w;

call gcd;

end;

end;

begin

x:=a; y:=b;

call gcd;

write(x);

end.

0 jmp 0 21 Jump to 21, start of main

1 jmp 0 2

2 inc 0 4

3 lod 1 4

4 lit 0 0 Load literal 0

5 opr 0 12 Test if y>0

6 jpc 0 20 Jump to 20 if false

7 lod 1 4 Load y

8 sto 0 3 Store in w

9 lod 1 3

10 lod 1 3

11 lod 1 4

12 opr 0 5

13 lod 1 4

14 opr 0 4

15 opr 0 3

16 sto 1 4

17 lod 0 3

18 sto 1 3

19 cal 1 2

20 opr 0 0

21 inc 0 5

22 lit 0 75

23 sto 0 3

24 lit 0 55

25 sto 0 4

26 cal 0 2

27 lod 0 3

28 wrt 0 0 Write stack top

29 opr 0 0


Related Discussions:- Automata and compiler

D c o, Prove xy+yz+ýz=xy+z

Prove xy+yz+ýz=xy+z

Generalization of the interpretation of local automata, The generalization ...

The generalization of the interpretation of strictly local automata as generators is similar, in some respects, to the generalization of Myhill graphs. Again, the set of possible s

Recognition problem, The Recognition Problem for a class of languages is th...

The Recognition Problem for a class of languages is the question of whether a given string is a member of a given language. An instance consists of a string and a (?nite) speci?cat

Overview of dfa, Explain Theory of Computation ,Overview of DFA,NFA, CFG, P...

Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For

Merging nodes, Another striking aspect of LTk transition graphs is that the...

Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting

Non deterministic finite state automaton, Automaton (NFA) (with ε-transitio...

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

Computation of an automaton, The computation of an SL 2 automaton A = ( Σ,...

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in

Computer Simulation, Generate 100 random numbers with the exponential distr...

Generate 100 random numbers with the exponential distribution lambda=5.0.What is the probability that the largest of them is less than 1.0?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd