Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Automata and Compiler
(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.
(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c
(2.1) Draw a syntax chart for this grammar. [5]
(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]
(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.
const a=75, b=55;
var x, y;
procedure gcd;
var w;
begin
if y>0 then begin
w:=y;
y:=x ? (x/y)*y;
x:=w;
call gcd;
end;
x:=a; y:=b;
write(x);
end.
0 jmp 0 21 Jump to 21, start of main
1 jmp 0 2
2 inc 0 4
3 lod 1 4
4 lit 0 0 Load literal 0
5 opr 0 12 Test if y>0
6 jpc 0 20 Jump to 20 if false
7 lod 1 4 Load y
8 sto 0 3 Store in w
9 lod 1 3
10 lod 1 3
11 lod 1 4
12 opr 0 5
13 lod 1 4
14 opr 0 4
15 opr 0 3
16 sto 1 4
17 lod 0 3
18 sto 1 3
19 cal 1 2
20 opr 0 0
21 inc 0 5
22 lit 0 75
23 sto 0 3
24 lit 0 55
25 sto 0 4
26 cal 0 2
27 lod 0 3
28 wrt 0 0 Write stack top
29 opr 0 0
As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua
Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi
State & prove pumping lemma for regular set. Show that for the language L={ap |p is a prime} is not regular
In general non-determinism, by introducing a degree of parallelism, may increase the accepting power of a model of computation. But if we subject NFAs to the same sort of analysis
write grammer to produce all mathematical expressions in c.
Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn
How useful is production function in production planning?
Prove xy+yz+ýz=xy+z
The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa
The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd