Automata and compiler, Theory of Computation

Assignment Help:

Automata and Compiler

(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.

(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c

(2.1) Draw a syntax chart for this grammar. [5]

(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]

(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.

const a=75, b=55;

var x, y;

procedure gcd;

var w;

begin

if y>0 then begin

w:=y;

y:=x ? (x/y)*y;

x:=w;

call gcd;

end;

end;

begin

x:=a; y:=b;

call gcd;

write(x);

end.

0 jmp 0 21 Jump to 21, start of main

1 jmp 0 2

2 inc 0 4

3 lod 1 4

4 lit 0 0 Load literal 0

5 opr 0 12 Test if y>0

6 jpc 0 20 Jump to 20 if false

7 lod 1 4 Load y

8 sto 0 3 Store in w

9 lod 1 3

10 lod 1 3

11 lod 1 4

12 opr 0 5

13 lod 1 4

14 opr 0 4

15 opr 0 3

16 sto 1 4

17 lod 0 3

18 sto 1 3

19 cal 1 2

20 opr 0 0

21 inc 0 5

22 lit 0 75

23 sto 0 3

24 lit 0 55

25 sto 0 4

26 cal 0 2

27 lod 0 3

28 wrt 0 0 Write stack top

29 opr 0 0


Related Discussions:- Automata and compiler

Notes, write short notes on decidable and solvable problem

write short notes on decidable and solvable problem

Describe the algorithm and draw the transition diagram, 1. Simulate a TM wi...

1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization

REGULAR GRAMMAR, Find the Regular Grammar for the following Regular Express...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Hhhhhhhhhhhhhhhhh, Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhh...

Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhMinimum 100 words accepted#

Myhill-nerode theorem, The Myhill-Nerode Theorem provided us with an algori...

The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes

Example of finite state automaton, The initial ID of the automaton given in...

The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p

Kleenes theorem, All that distinguishes the de?nition of the class of Regul...

All that distinguishes the de?nition of the class of Regular languages from that of the class of Star-Free languages is that the former is closed under Kleene closure while the lat

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd