Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Automata and Compiler
(1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last four bits of the binary expansion of N. (1.1) Make a regular expression ? of this language. For example the set of strings that end with 101 is expressed by a regular expression (0+1)*101. (1.2) Make an NFA that accepts this expression ?. You should remove any ?-moves that can be done trivially by inspection. (1.3) Make a subset automaton that accepts the language. (1.4) Perform state minimization on the above automaton.
(2) [25 marks] A CFG is given by S ? aSbS, S ? bSaS, S ? c
(2.1) Draw a syntax chart for this grammar. [5]
(2.2) Write a Python program for the recursive descent parser Trace the parser using two strings of at least 10 symbols, one for an accepted case and one for an unaccepted case. Do the trace using the style in the notes. [20]
(3) [25 marks] A sample program for computing the greatest common divisor by recursive call and its object program are given below. Some sample comments are given.
const a=75, b=55;
var x, y;
procedure gcd;
var w;
begin
if y>0 then begin
w:=y;
y:=x ? (x/y)*y;
x:=w;
call gcd;
end;
x:=a; y:=b;
write(x);
end.
0 jmp 0 21 Jump to 21, start of main
1 jmp 0 2
2 inc 0 4
3 lod 1 4
4 lit 0 0 Load literal 0
5 opr 0 12 Test if y>0
6 jpc 0 20 Jump to 20 if false
7 lod 1 4 Load y
8 sto 0 3 Store in w
9 lod 1 3
10 lod 1 3
11 lod 1 4
12 opr 0 5
13 lod 1 4
14 opr 0 4
15 opr 0 3
16 sto 1 4
17 lod 0 3
18 sto 1 3
19 cal 1 2
20 opr 0 0
21 inc 0 5
22 lit 0 75
23 sto 0 3
24 lit 0 55
25 sto 0 4
26 cal 0 2
27 lod 0 3
28 wrt 0 0 Write stack top
29 opr 0 0
As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua
shell script to print table in given range
Both L 1 and L 2 are SL 2 . (You should verify this by thinking about what the automata look like.) We claim that L 1 ∪ L 2 ∈ SL 2 . To see this, suppose, by way of con
The Myhill-Nerode Theorem provided us with an algorithm for minimizing DFAs. Moreover, the DFA the algorithm produces is unique up to isomorphism: every minimal DFA that recognizes
#can you solve a problem of palindrome using turing machine with explanation and diagrams?
We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1
Theorem The class of recognizable languages is closed under Boolean operations. The construction of the proof of Lemma 3 gives us a DFA that keeps track of whether or not a give
We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.
conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd