Local myhill graphs, Theory of Computation

Assignment Help:

Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ1σ2 ....... σk-1σk asserts, in essence, that if we have just scanned σ1σ2 ....... σk-1 the next symbol is permitted to be σk. The question of whether a given symbol causes the computation to reject or not depends on the preceding k - 1 symbols. Thus, we will take the vertices of the graph to be labeled with strings of length less than or equal to k - 1 over Σ plus one vertex labeled ‘x' and one labeled ‘x'.

We can interpret a k-factor σ1σ2 σk-1σk, then, as denoting an edge between the node labeled σ1σ2 ........σk-1 and that labeled σ2.......σk (the last k - 1 symbols of the string obtained by adding σk to the end of σ1σ2 ........σk-1). While the symbol responsible for the transition along an edge can be determined by looking at the last symbol of the label of the node the edge leads to, for clarity we will label the edges with that symbol as well.

Each of the factors of form xσ2 ........ σk will be interpreted as a path from the vertex labeled x through the vertices labeled with successive pre?xes of σ2 ........ σk, to the vertex labeled σ2 ........ σk with the edges labeled σ2, . . . , σk in sequence. Those of the form σ1 ...... σk-1x will be interpreted as an edge from the vertex labeled σ1 ...... σk-1 to that labeled ‘x', with the edge labeled ‘ε'.

Finally, those of the form xσ1.......σix, for 0 ≤ i < k - 1, (where the substring σ1 ........ σi may be empty) will be interpreted as a path through vertices labeled with successive pre?xes of σ    σ (possibly no intermediate vertices) from the vertex labeled ‘x' to that labeled ‘x', with the edges labeled with σ1, . . . , σi (possibly ε) in sequence.


Related Discussions:- Local myhill graphs

Mapping reducibility, Can you say that B is decidable? If you somehow know...

Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?

Give a strictly 2-local automaton, Let L 3 = {a i bc j | i, j ≥ 0}. Give ...

Let L 3 = {a i bc j | i, j ≥ 0}. Give a strictly 2-local automaton that recognizes L 3 . Use the construction of the proof to extend the automaton to one that recognizes L 3 . Gi

Distinguish between mealy and moore machine, Distinguish between Mealy and ...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1's encountered is even or odd.

Strictly local languages, While the SL 2 languages include some surprising...

While the SL 2 languages include some surprisingly complex languages, the strictly 2-local automata are, nevertheless, quite limited. In a strong sense, they are almost memoryless

Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

Fsa as generators, The SL 2 languages are speci?ed with a set of 2-factors...

The SL 2 languages are speci?ed with a set of 2-factors in Σ 2 (plus some factors in {?}Σ and some factors in Σ{?} distinguishing symbols that may occur at the beginning and en

NP complete, I want a proof for any NP complete problem

I want a proof for any NP complete problem

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd