Push down automata, Theory of Computation

Assignment Help:
Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for
some i, 1 = i = min(|x|, |y|) }.
For your PDA to work correctly it will need to be non-deterministic. You can
assume that you will always be given a valid string – that is, the input will always
contain one # and x and y will be strings over {a, b}. My PDA has 31 states and
and is broken into two major sections, one for |x| = |y| and one for |x| ? |y|.
For the case where we assume that |x| = |y|, you need to find a symbol that
matches at the same index of x and y (xi = yi for some i) and a symbol that does
not match at the same index of x and y (xj ? yj for some j). One way that this can
be accomplished is by finding an index i such that xi = yi and xi+1 ? yi+1 or xi+1 =
yi+1 and xi ? yi. As in programming assignment 3, you can store the index in the
stack and the values of xi and xi+1 in the state.
For the case where we assume that |x| ? |y|, you need to find an index i where
xi = yi. Since the lengths are different, we get that x ? y without finding an index j
in which xj ? yj. For this case, you can simple check that x1 = y1. If x1 ? y1, then
the other portion of the code (where we assume that |x| = |y|) will accept the
string.

Related Discussions:- Push down automata

IT PRoject Management, What are the benefits of using work breakdown struct...

What are the benefits of using work breakdown structure, Project Management

Possibility of recognizing the palindrome language, Computer has a single F...

Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this

Finite-state automaton, Paths leading to regions B, C and E are paths which...

Paths leading to regions B, C and E are paths which have not yet seen aa. Those leading to region B and E end in a, with those leading to E having seen ba and those leading to B no

Union, Intuitively, closure of SL 2 under intersection is reasonably easy ...

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

Programming languages, Different types of applications and numerous program...

Different types of applications and numerous programming languages have been developed to make easy the task of writing programs. The assortment of programming languages shows, dif

Positiveness problem - decision problems, For example, the question of whet...

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that

Tuning machine, design a tuning machine for penidrome

design a tuning machine for penidrome

Nfas with e-transitions, We now add an additional degree of non-determinism...

We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1

Deterministic finite automata, conversion from nfa to dfa 0 | 1 ____...

conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd