Applying the pumping lemma, Theory of Computation

Assignment Help:

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complicated-rather than just the single universal quanti?er ("for all languages L") and single existential quanti?er ("there exists n"), we have a nest of alternating quanti?ers (denoting "for all" as ∀ and "there exists" as ∃):

(∀L)[L regular ⇒

(∃n)[

(∀x)[x ∈ L and |x| ≥ n ⇒

(∃u, v,w)[x = uvw and

|uv| ≤ n and

|v| ≥ 1 and

(∀i ≥ 0)[uviw ∈ L]]]]].

Just as with the lemmas for the local languages, we will approach this as an adversary game. Our proof will consist of a strategy for showing that L fails to satisfy the pumping lemma. Our choices are the "for all"s; the "there exists"s are our adversary's choices. There are just a few more rounds in this game than there were in the lemmas for the local languages. The key things are being clear about which are our choices and which are the adversary's and making sure that our strategy accounts for every legal choice the adversary
might make.

The game starts with our choice of the L we wish to prove to be non regular. Our adversary then chooses some n, we choose a string x ∈ L of length at least n, etc. We win if, at the end of this process, we can choose i such that uviw ∈ L. Of course, our strategy at each step will depend on the choices our adversary has made.

What we end up with is a proof by contradiction. For instance:

To show that Lab = {ajbj| j ≥ 0} is not regular.


Related Discussions:- Applying the pumping lemma

Strictly local generation automaton, Another way of interpreting a strictly...

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

#title., distinguish between histogram and historigram

distinguish between histogram and historigram

Turing machine , Let ? ={0,1} design a Turing machine that accepts L={0^m ...

Let ? ={0,1} design a Turing machine that accepts L={0^m 1^m 2^m } show using Id that a string from the language is accepted & if not rejected .

Decision problems of regular languages, We'll close our consideration of re...

We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

Nfas with e-transitions, We now add an additional degree of non-determinism...

We now add an additional degree of non-determinism and allow transitions that can be taken independent of the input-ε-transitions. Here whenever the automaton is in state 1

Positiveness problem - decision problems, For example, the question of whet...

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that

Data retriving, i have research method project and i meef to make prposal w...

i have research method project and i meef to make prposal with topic. If this service here please help me

Regular expressions, The project 2 involves completing and modifying the C+...

The project 2 involves completing and modifying the C++ program that evaluates statements of an expression language contained in the Expression Interpreter that interprets fully pa

Turing machine, Design a turing machine to compute x + y (x,y > 0) with x a...

Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd