Applying the pumping lemma, Theory of Computation

Assignment Help:

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complicated-rather than just the single universal quanti?er ("for all languages L") and single existential quanti?er ("there exists n"), we have a nest of alternating quanti?ers (denoting "for all" as ∀ and "there exists" as ∃):

(∀L)[L regular ⇒

(∃n)[

(∀x)[x ∈ L and |x| ≥ n ⇒

(∃u, v,w)[x = uvw and

|uv| ≤ n and

|v| ≥ 1 and

(∀i ≥ 0)[uviw ∈ L]]]]].

Just as with the lemmas for the local languages, we will approach this as an adversary game. Our proof will consist of a strategy for showing that L fails to satisfy the pumping lemma. Our choices are the "for all"s; the "there exists"s are our adversary's choices. There are just a few more rounds in this game than there were in the lemmas for the local languages. The key things are being clear about which are our choices and which are the adversary's and making sure that our strategy accounts for every legal choice the adversary
might make.

The game starts with our choice of the L we wish to prove to be non regular. Our adversary then chooses some n, we choose a string x ∈ L of length at least n, etc. We win if, at the end of this process, we can choose i such that uviw ∈ L. Of course, our strategy at each step will depend on the choices our adversary has made.

What we end up with is a proof by contradiction. For instance:

To show that Lab = {ajbj| j ≥ 0} is not regular.


Related Discussions:- Applying the pumping lemma

Myhill-nerode theorem, This close relationship between the SL2 languages an...

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.

Chomsky-schutzenberger, The upper string r ∈ Q+ is the sequence of states v...

The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa

Production, How useful is production function in production planning?

How useful is production function in production planning?

Algorithm for the universal recognition problem, Sketch an algorithm for th...

Sketch an algorithm for the universal recognition problem for SL 2 . This takes an automaton and a string and returns TRUE if the string is accepted by the automaton, FALSE otherwi

Automata, As we are primarily concerned with questions of what is and what ...

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Deterministic finite automata, conversion from nfa to dfa 0 | 1 ____...

conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}

Myhill graphs, Another way of representing a strictly 2-local automaton is ...

Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of

Formal languages and grammar, The universe of strings is a very useful medi...

The universe of strings is a very useful medium for the representation of information as long as there exists a function that provides the interpretation for the information carrie

Production, How useful is production function in production planning?

How useful is production function in production planning?

#titl, matlab v matlab

matlab v matlab

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd