Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complicated-rather than just the single universal quanti?er ("for all languages L") and single existential quanti?er ("there exists n"), we have a nest of alternating quanti?ers (denoting "for all" as ∀ and "there exists" as ∃):
(∀L)[L regular ⇒
(∃n)[
(∀x)[x ∈ L and |x| ≥ n ⇒
(∃u, v,w)[x = uvw and
|uv| ≤ n and
|v| ≥ 1 and
(∀i ≥ 0)[uviw ∈ L]]]]].
Just as with the lemmas for the local languages, we will approach this as an adversary game. Our proof will consist of a strategy for showing that L fails to satisfy the pumping lemma. Our choices are the "for all"s; the "there exists"s are our adversary's choices. There are just a few more rounds in this game than there were in the lemmas for the local languages. The key things are being clear about which are our choices and which are the adversary's and making sure that our strategy accounts for every legal choice the adversarymight make.
The game starts with our choice of the L we wish to prove to be non regular. Our adversary then chooses some n, we choose a string x ∈ L of length at least n, etc. We win if, at the end of this process, we can choose i such that uviw ∈ L. Of course, our strategy at each step will depend on the choices our adversary has made.
What we end up with is a proof by contradiction. For instance:
To show that Lab = {ajbj| j ≥ 0} is not regular.
The Last Stop Boutique is having a five-day sale. Each day, starting on Monday, the price will drop 10% of the previous day’s price. For example, if the original price of a product
Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL
a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le
how to write program Minimum Cost Calculation - Vogel Approximation Method(VAM
The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p
Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of
In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems
Automata and Compiler (1) [25 marks] Let N be the last two digits of your student number. Design a finite automaton that accepts the language of strings that end with the last f
. On July 1, 2010, Harris Co. issued 6,000 bonds at $1,000 each. The bonds paid interest semiannually at 5%. The bonds had a term of 20 years. At the time of issuance, the market r
Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd