Applying the pumping lemma, Theory of Computation

Assignment Help:

Applying the pumping lemma is not fundamentally di?erent than applying (general) su?x substitution closure or the non-counting property. The pumping lemma is a little more complicated-rather than just the single universal quanti?er ("for all languages L") and single existential quanti?er ("there exists n"), we have a nest of alternating quanti?ers (denoting "for all" as ∀ and "there exists" as ∃):

(∀L)[L regular ⇒

(∃n)[

(∀x)[x ∈ L and |x| ≥ n ⇒

(∃u, v,w)[x = uvw and

|uv| ≤ n and

|v| ≥ 1 and

(∀i ≥ 0)[uviw ∈ L]]]]].

Just as with the lemmas for the local languages, we will approach this as an adversary game. Our proof will consist of a strategy for showing that L fails to satisfy the pumping lemma. Our choices are the "for all"s; the "there exists"s are our adversary's choices. There are just a few more rounds in this game than there were in the lemmas for the local languages. The key things are being clear about which are our choices and which are the adversary's and making sure that our strategy accounts for every legal choice the adversary
might make.

The game starts with our choice of the L we wish to prove to be non regular. Our adversary then chooses some n, we choose a string x ∈ L of length at least n, etc. We win if, at the end of this process, we can choose i such that uviw ∈ L. Of course, our strategy at each step will depend on the choices our adversary has made.

What we end up with is a proof by contradiction. For instance:

To show that Lab = {ajbj| j ≥ 0} is not regular.


Related Discussions:- Applying the pumping lemma

A composable-reset DFA (CR-DFA) is a five-tuple, Question 2 (10 pt): In thi...

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph

Class of local languages is not closed under union, Both L 1 and L 2 are ...

Both L 1 and L 2 are SL 2 . (You should verify this by thinking about what the automata look like.) We claim that L 1 ∪ L 2 ∈ SL 2 . To see this, suppose, by way of con

Overview of dfa, Explain Theory of Computation ,Overview of DFA,NFA, CFG, P...

Explain Theory of Computation ,Overview of DFA,NFA, CFG, PDA, Turing Machine, Regular Language, Context Free Language, Pumping Lemma, Context Sensitive Language, Chomsky Normal For

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Mapping reducibility, (c) Can you say that B is decidable? (d) If you someh...

(c) Can you say that B is decidable? (d) If you somehow know that A is decidable, what can you say about B?

Strictly 2 - local automata, We will assume that the string has been augmen...

We will assume that the string has been augmented by marking the beginning and the end with the symbols ‘?' and ‘?' respectively and that these symbols do not occur in the input al

Define ambiguity in cfg, Define the following concept with an example: a.  ...

Define the following concept with an example: a.    Ambiguity in CFG b.    Push-Down Automata c.    Turing Machine

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd