Merging nodes, Theory of Computation

Assignment Help:

Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting node or not. From that perspective, there is surely no reason to distinguish the nodes in the region marked H in Figure 2. Every one of these is an accepting node and every path from any one of them leads only to others in the same region. Every string with an initial segment which reaches one of these nodes will be accepted regardless of what the rest of the string looks like.

With a little more thought, it should become clear that the nodes in each of the other regions marked out in the ?gure are equivalent in a similar way. Any path which, when appended to a path leading to any one of the nodes, extends it to a path leading to an accepting state will do the same for paths leading to any node in the same region.

We can characterize the paths leading to the nodes in each region in terms of the components of aa ∧ (¬bb ∨ ba) they satisfy. Paths leading to region H satisfy aa ∧ ba. Strings starting this way will be accepting no matter what occurs in the remainder of the string. Regions D, F and G all satisfy aa. D and F also satisfy ¬bb and, so, are accepting. Paths reaching region G have seen bb and no longer accept until they have been extended with an a, thus satisfying aa ∧ ba and entering region H. We need to distinguish the nodes inregions D and F because paths leading to D end in a and, therefore, can be extended with b harmlessly, while if a path leading to F is extended with b we will no longer accept it.


Related Discussions:- Merging nodes

Universality problem, The Universality Problem is the dual of the emptiness...

The Universality Problem is the dual of the emptiness problem: is L(A) = Σ∗? It can be solved by minor variations of any one of the algorithms for Emptiness or (with a little le

Discrete math, Find the Regular Grammar for the following Regular Expressio...

Find the Regular Grammar for the following Regular Expression: a(a+b)*(ab*+ba*)b.

Suffix substitution , Exercise Show, using Suffix Substitution Closure, tha...

Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL

A composable-reset DFA (CR-DFA) is a five-tuple, Question 2 (10 pt): In thi...

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph

Turing machine, Design a turing machine to compute x + y (x,y > 0) with x a...

Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

Wearable computers.., what are the advantages and disadvantages of wearable...

what are the advantages and disadvantages of wearable computers?

Computation of an automaton, The computation of an SL 2 automaton A = ( Σ,...

The computation of an SL 2 automaton A = ( Σ, T) on a string w is the maximal sequence of IDs in which each sequential pair of IDs is related by |- A and which starts with the in

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd