Merging nodes, Theory of Computation

Assignment Help:

Another striking aspect of LTk transition graphs is that they are generally extremely ine?cient. All we really care about is whether a path through the graph leads to an accepting node or not. From that perspective, there is surely no reason to distinguish the nodes in the region marked H in Figure 2. Every one of these is an accepting node and every path from any one of them leads only to others in the same region. Every string with an initial segment which reaches one of these nodes will be accepted regardless of what the rest of the string looks like.

With a little more thought, it should become clear that the nodes in each of the other regions marked out in the ?gure are equivalent in a similar way. Any path which, when appended to a path leading to any one of the nodes, extends it to a path leading to an accepting state will do the same for paths leading to any node in the same region.

We can characterize the paths leading to the nodes in each region in terms of the components of aa ∧ (¬bb ∨ ba) they satisfy. Paths leading to region H satisfy aa ∧ ba. Strings starting this way will be accepting no matter what occurs in the remainder of the string. Regions D, F and G all satisfy aa. D and F also satisfy ¬bb and, so, are accepting. Paths reaching region G have seen bb and no longer accept until they have been extended with an a, thus satisfying aa ∧ ba and entering region H. We need to distinguish the nodes inregions D and F because paths leading to D end in a and, therefore, can be extended with b harmlessly, while if a path leading to F is extended with b we will no longer accept it.


Related Discussions:- Merging nodes

Computation of a dfa or nfa, Computation of a DFA or NFA without ε-transiti...

Computation of a DFA or NFA without ε-transitions An ID (q 1 ,w 1 ) computes (qn,wn) in A = (Q,Σ, T, q 0 , F) (in zero or more steps) if there is a sequence of IDs (q 1

Turing, turing machine for prime numbers

turing machine for prime numbers

Exhaustive search, A problem is said to be unsolvable if no algorithm can s...

A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be note

Computer achitecture, what is a bus and draw a single bus structure

what is a bus and draw a single bus structure

Finiteness problem for regular languages, The fact that the Recognition Pro...

The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea

Prism algorithm, what exactly is this and how is it implemented and how to ...

what exactly is this and how is it implemented and how to prove its correctness, completeness...

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd