Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
The language accepted by a NFA A = (Q,Σ, δ, q0, F) is
NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an input tape, a single read head and an internal state, but when the transition function allows more than one next state for a given state and input we keep an independent internal state for each of the alternatives. In a sense we have a constantly growing and shrinking set of automata all processing the same input synchronously. For example, a computation of the NFA given above on ‘abaab' could be interpreted as:
This string is accepted, since there is at least one computation from 0 to 0 or 2 on ‘abaab'. Similarly, each of ‘ε', ‘ab', ‘aba' and ‘abaa' are accepted, but ‘a' alone is not. Note that if the input continues with ‘b' as shown there will be no states left; the automaton will crash. Clearly, it can accept no string starting with ‘abaabb' since the computations from 0 or ‘abaabb' end either in h0, bi or in h2, bi and, consequentially, so will all computations from 0 on any string extending it. The fact that in this model there is not necessarily a (non-crashing) computation from q0 for each string complicates the proof of the language accepted by the automaton-we can no longer assume that if there is no (non-crashing) computation from q0 to a ?nal state on w then there must be a (non-crashing) computation from q0 to a non-?nal state on w. As we shall see, however, we will never need to do such proofs for NFAs directly.
s->0A0|1B1|BB A->C B->S|A C->S|null find useless symbol?
While the SL 2 languages include some surprisingly complex languages, the strictly 2-local automata are, nevertheless, quite limited. In a strong sense, they are almost memoryless
To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the
What are the issues in computer design?
Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for some i, 1 = i = min(|x|, |y|) }. For your PDA to work correctly it will need to be non-determin
Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)
Exercise Show, using Suffix Substitution Closure, that L 3 . L 3 ∈ SL 2 . Explain how it can be the case that L 3 . L 3 ∈ SL 2 , while L 3 . L 3 ⊆ L + 3 and L + 3 ∈ SL
#can you solve a problem of palindrome using turing machine with explanation and diagrams?
How useful is production function in production planning?
examples of decidable problems
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd