Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while scanning a string in L1 . L2, for instance, when to switch from keeping track of factors for L1 to keeping track of factors from L2.
Assuming that the alphabets were not disjoint, there is (evidently, since LT is not closed under concatenation) no way, in general, to know that. For the recognizable languages, on the other hand, we have the convenience of being able to work with non-determinism. We don't actually have to know when to switch from one automaton to the next. Whenever we get to a point in the string that could possibly be the end of the pre?x that is in L1 we can just allow for a non-deterministic choice of whether to continue scanning for A1 (the machine recognizing L1) or to switch to scanning for A2. Since whenever the string is in L1 . L2 there will be some correct place to switch and since acceptance by a NFA requires only that there some accepting computation, the combined automaton will accept every string in L1 . L2. Moreover, the combined automaton will accept a string iff there is some point at which it can be split into a string accepted by A1 followed by one accepted by A2: it accepts all and only the strings in L1 . L2.
design an automata for strings having exactly four 1''s
A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be note
Computer has a single FIFO queue of ?xed precision unsigned integers with the length of the queue unbounded. You can use access methods similar to those in the third model. In this
write grammer to produce all mathematical expressions in c.
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn
Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to
what is theory of computtion
constract context free g ={ a^n b^m : m,n >=0 and n
Both L 1 and L 2 are SL 2 . (You should verify this by thinking about what the automata look like.) We claim that L 1 ∪ L 2 ∈ SL 2 . To see this, suppose, by way of con
1. Simulate a TM with infinite tape on both ends using a two-track TM with finite storage 2. Prove the following language is non-Turing recognizable using the diagnolization
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd