#dfa, Theory of Computation

Assignment Help:
Give DFA''s accepting the following languages over the alphabet {0,1}:
i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5. For example, strings 101, 1010, and 1111 are in the language; 0, 100, and 111 are not.

Related Discussions:- #dfa

Decision Theroy, spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8...

spam messages h= 98%, m= 90%, l= 80% non spam h=12%, m = 8%, l= 5% The organization estimates that 75% of all messages it receives are spam messages. If the cost of not blocking a

Non-regular languages, Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = ...

Suppose A = (Q,Σ, T, q 0 , F) is a DFA and that Q = {q 0 , q 1 , . . . , q n-1 } includes n states. Thinking of the automaton in terms of its transition graph, a string x is recogn

Automaton for finite languages, We can then specify any language in the cla...

We can then specify any language in the class of languages by specifying a particular automaton in the class of automata. We do that by specifying values for the parameters of the

Gephi, construct a social network from the real-world data, perform some si...

construct a social network from the real-world data, perform some simple network analyses using Gephi, and interpret the results.

Context free grammar, A context free grammar G = (N, Σ, P, S)  is in binary...

A context free grammar G = (N, Σ, P, S)  is in binary form if for all productions A we have |α| ≤ 2. In addition we say that G is in Chomsky Normaml Form (CNF) if it is in bi

Tuning machine, design a tuning machine for penidrome

design a tuning machine for penidrome

Prove the arden''s theorem, State and Prove the Arden's theorem for Regular...

State and Prove the Arden's theorem for Regular Expression

Local myhill graphs, Myhill graphs also generalize to the SLk case. The k-f...

Myhill graphs also generalize to the SLk case. The k-factors, however, cannot simply denote edges. Rather the string σ 1 σ 2 ....... σ k-1 σ k asserts, in essence, that if we hav

First model of computation, Computer has a single unbounded precision count...

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explici

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd