Non deterministic finite state automaton, Theory of Computation

Assignment Help:

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q0, Fi where Q, Σ, q0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}).

We must also modify the de?nitions of the directly computes relation and the path function to allow for the possibility that ε-transitions may occur anywhere in a computation or path. The ε-transition from state 1 to state 3 in the example, for instance, allows the automaton on input ‘a' to go from state 0 not only to state 1 but also to immediately go on to state 3. Similarly, it allows the automaton, when in state 1 with input ‘b', to move ?rst to state 3 and then take the ‘b' edge to state 0 or, when in state 0 with input ‘a', to move ?rst to state 2 and then take the ‘a' edge to state 3. Thus, on a given input ‘σ', the automaton can take any sequence of ε-transitions followed by exactly one σ-transition and then any sequence of ε-transitions. To capture this in the de?nition of δ we start by de?ning the function ε-Closure which, given a state, returns the set of all states reachable from it by any sequence of ε-transitions.


Related Discussions:- Non deterministic finite state automaton

Programming languages, Different types of applications and numerous program...

Different types of applications and numerous programming languages have been developed to make easy the task of writing programs. The assortment of programming languages shows, dif

Decision problems, In Exercise 9 you showed that the recognition problem an...

In Exercise 9 you showed that the recognition problem and universal recognition problem for SL2 are decidable. We can use the structure of Myhill graphs to show that other problems

Positiveness problem - decision problems, For example, the question of whet...

For example, the question of whether a given regular language is positive (does not include the empty string) is algorithmically decidable. "Positiveness Problem". Note that

Construct a recognizer, Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG t...

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

Path function of a nfa, The path function δ : Q × Σ*→ P(Q) is the extension...

The path function δ : Q × Σ*→ P(Q) is the extension of δ to strings: Again, this just says that to ?nd the set of states reachable by a path labeled w from a state q in an

Closure properties of recognizable languages, We got the class LT by taking...

We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also

Kleene Closure, 1. Does above all''s properties can be used to prove a lang...

1. Does above all''s properties can be used to prove a language regular? 2..which of the properties can be used to prove a language regular and which of these not? 3..Identify one

Language accepted by a nfa, The language accepted by a NFA A = (Q,Σ, δ, q 0...

The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu

Theory of computation, Computations are deliberate for processing informati...

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd