Transition graphs, Theory of Computation

Assignment Help:

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled ‘?') and the edges were labeled with individual alphabet symbols. The k-factors of the automaton could be recovered by appending the symbol on an edge to the factor of the node it is incident from. The key value of the graphs is the way that they capture the set of all computations of the automaton in a concise form: every computation of the automaton corresponds to a path through the automaton from ‘?' to ‘?' and vice versa. The su?x substitution closure property is, in essence, a consequence of this fact. All that is signi?cant about the initial portion of a computation is the node it ends on. All strings that lead to the same node are equivalent in the sense that any continuation that extends one of them to form a string that is accepted will extend any of them to form a string that is accepted, and any continuation that leads one of them to be rejected will lead any of them to be rejected.

In adapting this idea for LTk automata, we have to confront the fact that the last k - 1 symbols of the input are no longer enough to characterize the initial portion of a string. We now will also need the record of all k-factors which occurred in that initial portion. To accommodate this, we will extend the labeling of our nodes to include sets of k-factors. The node set will be pairs in which the ?rst component is a k - 1 factor (the last k - 1 symbols of the input) and the second component is a set of k-factors. At the initial node, not having scanned any of the input yet, we have seen no k-factors, that is, the initial set of k-factors is empty (∅). The label of the initial node, then is (?, ∅).


Related Discussions:- Transition graphs

Formal language theory, This was one of the ?rst substantial theorems of Fo...

This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But

Kleenes theorem, All that distinguishes the de?nition of the class of Regul...

All that distinguishes the de?nition of the class of Regular languages from that of the class of Star-Free languages is that the former is closed under Kleene closure while the lat

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Automata answer, build a TM that enumerate even set of even length string o...

build a TM that enumerate even set of even length string over a

CNF, S-->AAA|B A-->aA|B B-->epsilon

S-->AAA|B A-->aA|B B-->epsilon

Decision problems of regular languages, We'll close our consideration of re...

We'll close our consideration of regular languages by looking at whether (certain) problems about regular languages are algorithmically decidable.

Transition graph for the automaton, Lemma 1 A string w ∈ Σ* is accepted by ...

Lemma 1 A string w ∈ Σ* is accepted by an LTk automaton iff w is the concatenation of the symbols labeling the edges of a path through the LTk transition graph of A from h?, ∅i to

Equivalence problem, The Equivalence Problem is the question of whether two...

The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd