Transition graphs, Theory of Computation

Assignment Help:

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled ‘?') and the edges were labeled with individual alphabet symbols. The k-factors of the automaton could be recovered by appending the symbol on an edge to the factor of the node it is incident from. The key value of the graphs is the way that they capture the set of all computations of the automaton in a concise form: every computation of the automaton corresponds to a path through the automaton from ‘?' to ‘?' and vice versa. The su?x substitution closure property is, in essence, a consequence of this fact. All that is signi?cant about the initial portion of a computation is the node it ends on. All strings that lead to the same node are equivalent in the sense that any continuation that extends one of them to form a string that is accepted will extend any of them to form a string that is accepted, and any continuation that leads one of them to be rejected will lead any of them to be rejected.

In adapting this idea for LTk automata, we have to confront the fact that the last k - 1 symbols of the input are no longer enough to characterize the initial portion of a string. We now will also need the record of all k-factors which occurred in that initial portion. To accommodate this, we will extend the labeling of our nodes to include sets of k-factors. The node set will be pairs in which the ?rst component is a k - 1 factor (the last k - 1 symbols of the input) and the second component is a set of k-factors. At the initial node, not having scanned any of the input yet, we have seen no k-factors, that is, the initial set of k-factors is empty (∅). The label of the initial node, then is (?, ∅).


Related Discussions:- Transition graphs

Union, Intuitively, closure of SL 2 under intersection is reasonably easy ...

Intuitively, closure of SL 2 under intersection is reasonably easy to see, particularly if one considers the Myhill graphs of the automata. Any path through both graphs will be a

Strictly local languages, While the SL 2 languages include some surprising...

While the SL 2 languages include some surprisingly complex languages, the strictly 2-local automata are, nevertheless, quite limited. In a strong sense, they are almost memoryless

Equivalence problem, The Equivalence Problem is the question of whether two...

The Equivalence Problem is the question of whether two languages are equal (in the sense of being the same set of strings). An instance is a pair of ?nite speci?cations of regular

Create a general algorithm from a checking algorithm, Claim Under the assum...

Claim Under the assumptions above, if there is an algorithm for checking a problem then there is an algorithm for solving the problem. Before going on, you should think a bit about

Production, How useful is production function in production planning?

How useful is production function in production planning?

Find regular grammar : a(a+b)*(ab*+ba*)b, Find the Regular Grammar for the ...

Find the Regular Grammar for the following Regular Expression:                    a(a+b)*(ab*+ba*)b.

Mapping reducibility, Can you say that B is decidable? If you somehow know...

Can you say that B is decidable? If you somehow know that A is decidable, what can you say about B?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd