Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes.
Proof: For the "only if" direction (that every recognizable language has ?nitely many Nerode equivalence classes) observe that L ∈ Recog iff L = L(A) for some DFA A and that if δ(q0,w) = δ(q0, u) (i.e., if the path from the start state labeled w and that labeled u end up at the same state) then w ≡L u. This is a consequence of the fact that the state ˆ δ(q0,w) encodes all the information the automaton remembers about the string w. If v extends w to wv ∈ L(A) then v is the label of a path to an accepting state from δ(q0,w). Since this is the same state as δ(q0, u) the same path witnesses that uv ∈ L. Similarly, if the path leads one to a non-accepting state then it must necessarily lead the other to the same state. The automaton has no way of distinguishing two strings that lead to the same state and, consequently, the language it recognizes cannot distinguish them. Since A is deterministic, every string in Σ* labels a path leading to some state, hence the equivalence classes corresponding to the states partition Σ*. Since the automaton has ?nitely many states, it distinguishes ?nitely many equivalence classes.
The objective of the remainder of this assignment is to get you thinking about the problem of recognizing strings given various restrictions to your model of computation. We will w
This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But
The initial ID of the automaton given in Figure 3, running on input ‘aabbba' is (A, aabbba) The ID after the ?rst three transitions of the computation is (F, bba) The p
what exactly is this and how is it implemented and how to prove its correctness, completeness...
The SL 2 languages are speci?ed with a set of 2-factors in Σ 2 (plus some factors in {?}Σ and some factors in Σ{?} distinguishing symbols that may occur at the beginning and en
When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program
how is it important
The path function δ : Q × Σ* → P(Q) is the extension of δ to strings: This just says that the path labeled ε from any given state q goes only to q itself (or rather never l
The fundamental idea of strictly local languages is that they are speci?ed solely in terms of the blocks of consecutive symbols that occur in a word. We'll start by considering lan
First model: Computer has a ?xed number of bits of storage. You will model this by limiting your program to a single ?xed-precision unsigned integer variable, e.g., a single one-by
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd