Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes.
Proof: For the "only if" direction (that every recognizable language has ?nitely many Nerode equivalence classes) observe that L ∈ Recog iff L = L(A) for some DFA A and that if δ(q0,w) = δ(q0, u) (i.e., if the path from the start state labeled w and that labeled u end up at the same state) then w ≡L u. This is a consequence of the fact that the state ˆ δ(q0,w) encodes all the information the automaton remembers about the string w. If v extends w to wv ∈ L(A) then v is the label of a path to an accepting state from δ(q0,w). Since this is the same state as δ(q0, u) the same path witnesses that uv ∈ L. Similarly, if the path leads one to a non-accepting state then it must necessarily lead the other to the same state. The automaton has no way of distinguishing two strings that lead to the same state and, consequently, the language it recognizes cannot distinguish them. Since A is deterministic, every string in Σ* labels a path leading to some state, hence the equivalence classes corresponding to the states partition Σ*. Since the automaton has ?nitely many states, it distinguishes ?nitely many equivalence classes.
The upper string r ∈ Q+ is the sequence of states visited by the automaton as it scans the lower string w ∈ Σ*. We will refer to this string over Q as the run of A on w. The automa
design an automata for strings having exactly four 1''s
Another way of representing a strictly 2-local automaton is with a Myhill graph. These are directed graphs in which the vertices are labeled with symbols from the input alphabet of
Prove xy+yz+ýz=xy+z
Ask queyystion #Minimum 100 words accepted#
Ask question #Minimum 100 words accepte
a) Let n be the pumping lemma constant. Then if L is regular, PL implies that s can be decomposed into xyz, |y| > 0, |xy| ≤n, such that xy i z is in L for all i ≥0. Since the le
One might assume that non-closure under concatenation would imply non closure under both Kleene- and positive closure, since the concatenation of a language with itself is included
A problem is said to be unsolvable if no algorithm can solve it. The problem is said to be undecidable if it is a decision problem and no algorithm can decide it. It should be note
Ask question #hhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhhMinimum 100 words accepted#
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd