Automaton for finite languages, Theory of Computation

Assignment Help:

We can then specify any language in the class of languages by specifying a particular automaton in the class of automata. We do that by specifying values for the parameters of the class. In this way, we can regard a specification of those parameters as a definition of a language in the class. Given our assumption of finiteness for the parameters, the definition will be finite.

The specification itself will be a mathematical object-a tuple of values, one for each parameter. We can illustrate this process by applying it to the class of Finite Languages. The obvious algorithm for recognizing such a language is to use a lookup table containing all and only the strings in the language. We then simply read the entire input and check to see if it is in the table. A schematic representation of an automaton implementing this algorithm is shown in Figure 1. The input is shown across the top, written on a tape one symbol per cell of the tape. (The structure of the input is irrelevant here, but will matter when we work with automata that scan the input sequentially.) The ∈ element, here, outputs TRUE iff its first input is a member of the set presented to its second input, so it represents some sort of search mechanism.


Related Discussions:- Automaton for finite languages

Theory of computation, Computations are deliberate for processing informati...

Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of

First model of computation, Computer has a single unbounded precision count...

Computer has a single unbounded precision counter which you can only increment, decrement and test for zero. (You may assume that it is initially zero or you may include an explici

Non deterministic finite state automaton, Automaton (NFA) (with ε-transitio...

Automaton (NFA) (with ε-transitions) is a 5-tuple: (Q,Σ, δ, q 0 , F i where Q, Σ, q 0 and F are as in a DFA and T ⊆ Q × Q × (Σ ∪ {ε}). We must also modify the de?nitions of th

Finiteness of languages is decidable, To see this, note that if there are a...

To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the

Language accepted by a nfa, The language accepted by a NFA A = (Q,Σ, δ, q 0...

The language accepted by a NFA A = (Q,Σ, δ, q 0 , F) is NFAs correspond to a kind of parallelism in the automata. We can think of the same basic model of automaton: an inpu

Finiteness problem for regular languages, The fact that the Recognition Pro...

The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea

Designing finite automata, a finite automata accepting strings over {a,b} e...

a finite automata accepting strings over {a,b} ending in abbbba

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd