Permutations and combinations, Mathematics

Assignment Help:

Consider this. You have four units A, B, C and D. You are asked to select two out of these four units. How do you go about this particular task? Will your methodology remain the same, if you are asked that you should select two units, but they should be according to some predefined criteria? Definitely, it differs. In this part we look at two techniques called Permutations and Combinations, which help us solve problems like these.

Before we start looking at permutations and combinations, let us acquaint ourselves with an important principle. It says: if an operation (first) has been performed in say 'm' ways and a second operation which can be performed in 'n' ways, then both the operations can be performed in m x n ways. The explanation is as follows.

The first operation can be performed in any one of the given m ways. After performing this operation in any one of the m ways, the second operation can be performed in any one of the n ways. Since both the operations are performed in any one of either m or n ways, why is that we get m x n ways? Here we have to understand that the first operation is performed in only one of the m ways, but with this one way we can associate n ways of doing the second operation. In other words, we have 1 x n = n ways of performing both the operations, taking into consideration not more than one way of performing the first operation. And therefore corresponding to m ways of performing the first operation we have m x n ways of performing both the operations.

Remember that this concept can be applied even if we have more than two operations. The following example should make this concept clear.

Example 

A person from his office can go to his residence via one of the 3 routes. In how many ways can that person go to his residence via one route and come to office by another route.

That person can go to his residence by one of the three routes. That is, he has 3 ways. Now he can come to office via one of the remaining two routes since he should not take the same route. That is, he can do so in two ways. Therefore, the number of ways that person can go to his residence and come back to his office by  3 x 2 = 6 ways.

Now we look at Permutations and its related concepts. Permutations are defined as each of the arrangements that can be made by taking some or all of the elements given. Here the word arrangement should be understood properly. This will be clear if we consider the given example of taking two out of four units A, B, C and D. The permutations of taking two units out of four can be done in the following ways.  

                   AB, AC, AD, BC, BD, CD

                   BA, CA, DA, CB, DB, DC

Here we are looking at arranging two units in a particular order. In other words, the arrangement AB is not the same as the arrangement BA and therefore, it is necessary to list both of them. Thus AB and BA both are different arrangements of two units A and B.


Related Discussions:- Permutations and combinations

Pre-calculus, Give all solutions between o degree and 360 degree for sin x=...

Give all solutions between o degree and 360 degree for sin x=3/2

Rental car agency has 50 cars, Rental car agency has 50 cars. Rental rate i...

Rental car agency has 50 cars. Rental rate in winter is 60%. What is probability that in give winter month the rental rate is fewer than 35 cars rented? Use normal distribution to

Standard deviation, i need to work out the standard deviation of 21.4

i need to work out the standard deviation of 21.4

Point-slope form, The next special form of the line which we have to look a...

The next special form of the line which we have to look at is the point-slope form of the line. This form is extremely useful for writing the equation of any line.  If we know that

Tangents with parametric equations - polar coordinates, Tangents with Param...

Tangents with Parametric Equations In this part we want to find out the tangent lines to the parametric equations given by X= f (t) Y = g (t) To do this let's first r

Function notation, Now we need to move onto something called function notat...

Now we need to move onto something called function notation.  Function notation will be utilized heavily throughout most of remaining section and so it is important to understand i

Linear Programming, A garden shop wishes to prepare a supply of special fer...

A garden shop wishes to prepare a supply of special fertilizer at a minimal cost by mixing two fertilizers, A and B. The mixture is to contain at least 45 units of phosphate at lea

Ordinary differential equation, find the normalised differential of the fol...

find the normalised differential of the following {1,x,x^3}

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd