Mathematical description of a perspective projection, Computer Graphics

Assignment Help:

Mathematical description of a Perspective Projection

A perspective transformation is found by prescribing a center of projection and a viewing plane. Let here assume that P(x,y,z) be any object point in 3-D and center of projection is at E(0,0,-d). The problem is to find out the image point coordinates P'(x',y',z') on the Z=0 plane as in Figure 18.

703_Mathematical description of a Perspective Projection.png

The parametric equation of a l EP, beginning from E and passing via P is:

E+ t(P-E)  0

=(0,0,-d)+t[(x,y,z)-(0,0,-d)]

=(0,0,-d)+t(x,y,z+d)

=[t.x, t.y, -d+t.(z+d)]

Point P' is acquired, when t=t*

There is, P'=(x',y',z') =[t*.x, t*.y, -d+t*.(z+d)]

Because P' lies on Z=0 plane implies -d+t*.(z+d)=0 must be true, there is t*=d/(z+d) is actual.

Therefore x'=t*.x=x.d/(z+d)

                  y'=t*.y=y.d/(z+d)

                  z'=-d+t*(z+d)=0,

 

Hence P'=( x.d/(z+d), y.d/(z+d), 0)

                  =(x/((z/d)+1),y/((z/d)+1),0)

In terms of Homogeneous coordinate system here P'=(x,y,0,(z/d)+1).  ---------(5)

 

The equation 5 in above can be written in matrix form as:

21_Mathematical description of a Perspective Projection 1.png

-------(1)

There is, P'h = Ph.Pper,z   ------    (2)

Here Pper,z in equation (4) represents the single point perspective transformation on z-axis.

The Ordinary coordinates are as:

[x',y',z',1]=[x/(r.z+1),y/(r.z+1),0,1]  where r=1/d                             ------ (3)


Related Discussions:- Mathematical description of a perspective projection

Gks, explain about gks

explain about gks

Determine how many key frames does one minute animation film, How many key ...

How many key frames does one minute animation film order along with no duplications need if there are five in among for each pair of key frames?   Solution : One minute = 60 sec

What is homogeneous coordinate, What is homogeneous coordinate? Discuss the...

What is homogeneous coordinate? Discuss the composite transformation matrix for two successive translations and scaling. In design and picture formation process, many times

Explain three dimensional transformations, Explain Three Dimensional Transf...

Explain Three Dimensional Transformations A 3D geometric transformation is utilized extensively in object modelling and rendering. 2D transformations are naturally extended to

Traditional animation techniques , Traditional Animation techniques as: ...

Traditional Animation techniques as: 1) Key Frames                        2) Cel Animation Formula: Required Key frames for a film = {[Time(in seconds)]

What is a dot size, What is a dot size? Dot size may be explained as th...

What is a dot size? Dot size may be explained as the diameter of a single dot on the devices output. Dot size is also known as the Spot size.

Prepare a cylinder, Question: (a) Write a short note on the dot syntax...

Question: (a) Write a short note on the dot syntax as used in actionScript. (b) A data type describes the kind of information a variable or ActionScript element can hold.

Briefly describe what you understand by smoothing, Question: (a) List a...

Question: (a) List and explain different types of lights that can be used in After Effects. (b) How is the density of dots between the boxes in a motion path related to th

Three sub-fields of computer simulation, Three Sub-Fields of Computer Simul...

Three Sub-Fields of Computer Simulation Computer simulation is the electronic equivalent of this kind of role playing and it functions to drive synthetic environments and virt

Define the term multimedia, Question (a) Define the term Multimedia. ...

Question (a) Define the term Multimedia. (b) Describe any four important tools you know about for a virtual campus. (c) Following our discussion in our lecture list an

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd