Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

Cohen sutherland, explain cohen sutherland line clipping algorithm

explain cohen sutherland line clipping algorithm

Displacement mapping, Implement displacement mapping and bump mapping on a ...

Implement displacement mapping and bump mapping on a sphere. The displacement can be whatever your choice. The bump map can be whatever your choice as well.

Line drawing algorithm, Adavantage and disadvantages of DDA and Bresenhams ...

Adavantage and disadvantages of DDA and Bresenhams line drawing algorithm

Uniform b - spline curve, Uniform B - spline curve: When the spacing betwe...

Uniform B - spline curve: When the spacing between Knot values is constant, the resulting curve is called a uniform B- spline. Blending function for B- spline curves are defined b

Produce a complete 3d cad model, 1. Identify the market segment for the pro...

1. Identify the market segment for the product and write a basic PDS 2. Produce three concept sketch ideas - (remember the assignment is a CAD one not a concept creative design

De casteljau algorithm - 2d clipping algorithms, De Casteljau Algorithm ...

De Casteljau Algorithm For computation of Bézier curves an iterative algorithm known as de Casteljau algorithm is used.  The algorithm uses repeated linear interpolation.

Differentiate between raster and vector images, QUESTION a) Differentia...

QUESTION a) Differentiate between raster and vector images. b) Explain the concept of bit depth. What is the minimum number if bits required for a one-colour digital image t

Digital painting, Please guide if there is any easy steps tutorial availabl...

Please guide if there is any easy steps tutorial available for digital painting in adobe photoshop.

Disadvantage of the raster scan display device, Disadvantage of the Raster ...

Disadvantage of the Raster Scan Display Device The major disadvantage of the raster scan is the jagged nature of the lines, happening from the information that the pixels are

What are the important properties of bezier curve, What are the important p...

What are the important properties of Bezier Curve?  It requires only four control points It always passes by the first and last control points The curve lies enti

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd