Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

Compare bresenham line generation algorithm with dda, 1. Compare Bresenham...

1. Compare Bresenham line generation with Digital Differential Analyzer line generation. Ans.   Bresenham line generation algorithm is better than Digital Differential Analyze

Low level techniques or motion specific, Low Level Techniques or Motion Spe...

Low Level Techniques or Motion Specific These techniques are utilized to control the motion of any graphic element in any animation scene completely. These techniques are also

Algorithms for filled-area primitives, Algorithms for filled-area primitive...

Algorithms for filled-area primitives These algorithms are classified into two categories (i)  Scan line algorithms (ii) Seed fill algorithms.

Orientation dependence - modeling and rendering, Orientation Dependence - M...

Orientation Dependence - Modeling and Rendering The outcomes of interpolated-shading models are dependent of the projected polygon's orientation. Because values are interpolat

Cathode ray tube - graphics hardware, Cathode Ray Tube - Graphics Hardware ...

Cathode Ray Tube - Graphics Hardware Cathode Ray Tube: this is a refreshing display device. The idea of a refreshing display is depicted pictorially is given as: In fact

Projections - 3d primitive and composite transformations, Projections W...

Projections When all display devices are 2D, you need to devise methods that give a realistic view of a 3D scene onto 2D display. With more and more devices coming in the marke

Objectives-multimedia, Objectives-Multimedia After going through this s...

Objectives-Multimedia After going through this section, you should be capable to: explain hypertext and hypermedia ideas, illustrate how multimedia applications are

Sutherland cohen line clipping algorithm, Describe briefly Sutherland Cohen...

Describe briefly Sutherland Cohen line clipping algorithm.   OR   Describe Cohen Sutherland line clipping algorithm. Cohen Sutherland line clipping algorithm In this algorith

Derive the common transformation of parallel projection, Derive the common ...

Derive the common transformation of parallel projection into the xy-plane in the direction of projection d=aI+bJ+cK. Solution: The common transformation of parallel projection

Is cad only helpful for design drawings, Question: Is CAD only helpful for ...

Question: Is CAD only helpful for design drawings? No. When true-scale, structurally valid drawings are the purpose for CAD's existence; it utilizes is as diverse as imagination

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd