Homogeneous coordinate systems - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Homogeneous Coordinate Systems - 2-d and 3-d transformations

Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a point. In place of (x,y), all points are represented via a triple (x,y,H) where H≠0;  along with the condition which is (x1,y1,H1)=(x2,y2,H2) ↔ x1/H1 = x2/H2 ; y1/H1 = y2/H2.

Currently, if we take H=0, then we contain point at infinity, that is, generation of horizons.

Hence, (2, 3, 6) and (4, 6, 12) are the similar points are represented by various coordinate triples, that is each point has many diverse Homogeneous Coordinate representation.

2-D Euclidian System                    Homogeneous Coordinate System

Any point (x,y)                                  (x,y,1)

 

If (x,y,H) be any point in HCS(such that H≠0); Then (x,y,H)=(x/H,y/H,1)

(x/H,y/H)                          (x,y,H)

Currently, we are in the position to build the matrix form for the translation along with the utilization of homogeneous coordinates.For translation transformation (x,y)→(x+tx,y+ty) within Euclidian system, here tx and ty both are the translation factor in direction of x and y respectively. Unfortunately, this manner of illustrating translation does not utilize a matrix; consequently it cannot be combined along with other transformations by easy matrix multiplication. That type of combination would be desirable; for illustration, we have observed that rotation about an arbitrary point can be done via a rotation, a translation and the other translation. We would like to be capable to combine these three transformations in a particular transformation for the sake of elegance and efficiency. One way of doing such, is to utilize homogeneous coordinates. In homogeneous coordinates we utilize 3x3 matrices in place of 2x2, initiating an additional dummy coordinate H. In place of (x,y), each point is demonstrated by a triple (x,y,H) here H≠0; In two dimensions the value of H is generally set at 1 for simplicity.

Hence, in homogeneous coordinate systems (x,y,1) → (x+tx,y+ty,1), now, we can simplifies this in matrix form like:

1389_Homogeneous Coordinate Systems - 2-d and 3-d transformations.png


Related Discussions:- Homogeneous coordinate systems - 2-d and 3-d transformations

Offset lithography printing, QUESTION A trainee designer, Susan, joins ...

QUESTION A trainee designer, Susan, joins your place of work. During a workshop, you are asked to present on printing procedures and agencies in Mauritius. Susan asks you what

3d graphics, Define hermite interpolation in deatail description with examp...

Define hermite interpolation in deatail description with example?

Two point and three point perspective transformations, Two-Point and Three-...

Two-Point and Three-Point Perspective transformations The two-point perspective projection can be acquired by rotating about one of the principal axis only and projecting upon

Tablet computer - cad and cam, Tablet Computer - CAD and CAM Tablet ...

Tablet Computer - CAD and CAM Tablet Computer: it is a complete computer comprises in a touch screen. Tablet computers can be specialized for only Internet utilize or be fu

., Define the working procedure of CRT with diagram

Define the working procedure of CRT with diagram

Shannon fano with the lempel ziv welsh algorithm, Question: (a) A stat...

Question: (a) A statistical encoding algorithm is being considered for the transmission of a large number of long text files over a public network. Part of the file content i

Polygon tables - curves and surfaces, Polygon Tables - curves and surfaces ...

Polygon Tables - curves and surfaces All polygons are analogous to a graph G (V, E). Remember that the analogy in which a polygon surface can be specified along with as a set

B splines, What is uniform rational splines

What is uniform rational splines

Find the normalization transformation, Illustration: Find the normalizatio...

Illustration: Find the normalization transformation N that uses the rectangle W (1, 1), X (5, 3), Y (4, 5) and Z (0, 3) as a window and also the normalized device screen like the

Raster & Vector display, what is refresh buffer/ identify the content and o...

what is refresh buffer/ identify the content and organisation of the refresh buffer for the case of raster display and vector display.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd