Sutherland cohen line clipping algorithm, Computer Graphics

Assignment Help:

Describe briefly Sutherland Cohen line clipping algorithm.   OR   Describe Cohen Sutherland line clipping algorithm.

Cohen Sutherland line clipping algorithm In this algorithm we divide the line clipping process into two phases: (1) identify those lines which intersect the clipping window and so need to be clipped and (2) perform the clipping. 

1. Visible: Both endpoints of the line lie within the window. 

2. Not visible: The line definitely lies outside the window. 

3. Clipping candidate: The line is in neither category 1 nor 2. In fig. 1 line AB is in category; line CD and EF are in category 2; and lines GH, IJ, and KJ are in category 3 (clipping candidate).  The algorithm employs an efficient procedure for finding the category of line. It proceeds in two steps:  1. Assign a 4-bit region code to each endpoint of the line. The code is determined according to which of the following nine regions of the plane the endpoint lies in starting from the leftmost bit, each bit of the code is set to true (1) of false (0) according to the scheme We rse the convention that sign (a) = 1 if a is positive, 0 otherwise. Of course, a point with code 0000 is inside the window.  2. The line is visible if both region codes are 0000, and not visible if the bitwise logical AND of the codes is not 0000, and a candidate for clipping if the bitwise logical AND of the region codes is 0000. For a line in category 3 we proceed to find the intersection point of the line with one of the boundaries of the clipping window, or to be exact, with the infinite extension of one of the boundaries. We choose an endpoint of the line say (x1,y1,) that is outside the window, i.e., whose region code is not 0000. We then select an extended line by observing that boundary lines that are candidates for intersection are the ones for which the chosen endpoint must be "pushed across" so as to change a "1" in its code to a "0". Consider line CD in fig. If endpoint C chosen, then the bottom boundary line y = y is selected for computing intersection. On the other hand if endpoint D is chosen, then either the top boundary line y = y of the right boundary line x = x is used. Now we replace endpoint with the intersection point effectively eliminating the portion of the original line that is on the outside of the selected window boundary. The new endpoint is then assigned an update region code and the clipped line re categorized and handled in the same way . This iterative process terminates when we finally reach a clipped line that belongs to either category 1 (visible ) of category 2 ( not visible ). 


Related Discussions:- Sutherland cohen line clipping algorithm

Common transformation for parallel projection-transformation, Derive the co...

Derive the common transformation for parallel projection into a specified view plane, here the direction of projection d=aI+bJ+cK is along the normal N=n1I+n2J+n3K along with the r

State the technology used in lcd, State the technology used in LCD Some...

State the technology used in LCD Some passive matrix (Pixels are illuminated in scanline order like a raster display but  the lack of phospherescence causes flicker) LCDs have

What is 2d, Question 1 What is 2D? Explain method of converting 2D pattern...

Question 1 What is 2D? Explain method of converting 2D patterns into 3D images Question 2 Write about the following tools to create dart Create dart Multiply dar

What is computer graphics, What is Computer Graphics. Computer graphic...

What is Computer Graphics. Computer graphics remains most existing and rapidly growing computer fields. Computer graphics may be explained as a pictorial representation or gra

Design and label the pattern of the folding carton, Question : You have...

Question : You have been approached to design a ‘tuck top auto-lock bottom' carton package for a high-end cosmetic jar under the brand name ‘Beauty One'. Your client asked you

2-d viewing and clipping - raster graphics and clipping, 2-D Viewing and C...

2-D Viewing and Clipping - Raster Graphics and  Clipping In the previous two units of this block, we illustrated the basic elements of computer graphics, that is, the hardware

Basics of animation - computer animation, Basics of Animation - Computer an...

Basics of Animation - Computer animation Historical and traditional methods for production of animation: As we have studied the transformations linked in computer graphics

Boundary-fill algorithm or flood-fill algorithm , boundary-fill algorithm o...

boundary-fill algorithm or flood-fill algorithm As you saw the implementation of scan line polygon fill requires that boundaries should be straight line segments.  The seed fi

Homogeneous coordinate systems - 2-d and 3-d transformations, Homogeneous C...

Homogeneous Coordinate Systems - 2-d and 3-d transformations Suppose P(x,y) be any point in 2-D Euclidean (Cartesian) system. In HC System, we add a third coordinate to a poin

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd