Example of integration strategy - integration techniques, Mathematics

Assignment Help:

Evaluate the subsequent integral.

∫ (tan x/sec4 x / sec4 x)  dx

Solution

This kind of integral approximately falls into the form given in 3c.  It is a quotient of tangent and secant and we are familiar with that sometimes we can use similar methods or techniques for products of tangents and secants on quotients.

The procedure from that section tells us that if we have even powers of secant to strip two of them off and transform the rest to tangents. That won't able to work here. We can split two secants off, but they would be in the denominator and they would not do us any good there.  Keep in mind that the point of splitting them off is thus they would be there for the substitution u = tan x .  That needs them to be in the numerator.  Thus, that won't work and so we will have to find out another solution method.

Actually there are two solution methods to this integral depending upon how you want to go about it. We'll take a look at both.

Solution 1

In this solution technique we could just convert all to sines and cosines and see if that provides us an integral we can deal with.

∫(tan x / sec4 x) (dx)

= ∫ (sin x / cos x) cos4 x dx

= ∫ sin x cos3 x dx                                u=cos x

= -∫ u3 du

= - ¼ cos4 x + c

Note that just transforming to sines and cosines won't all time work and if it does it won't always work this adequately.  Frequently there will be so many works that would require to be done to complete the integral.

Solution 2

This solution technique goes back to dealing with secants and tangents.  Let us notice that if we had a secant in the numerator we could just employ u = sec x as a substitution and it would be a quite quick and simple substitution to use. We do not have a secant in the numerator.  Though, we could very easily get a secant in the numerator merely by multiplying the numerator and denominator by secant.

∫ (tan x / sec4 x) dx

= ∫ (tan x sec x / sec5 x) dx                                          u = sec x

= ∫ 1/u5 (du)

= - (1/4) (1/sec4 x) + c

 = - ¼ cos4 x+c


Related Discussions:- Example of integration strategy - integration techniques

Find the largest clique, Generate G(1000,1/2) and find the largest clique ...

Generate G(1000,1/2) and find the largest clique you can.  A clique is a complete sub graph, that is, a set of vertices each pair of which is connected by an edge.

Linear functions, Linear functions are of the form: y = a 0 ...

Linear functions are of the form: y = a 0 + a 1 x 1 + a 2 x 2 + ..... + a n x n where a 0 , a 1 , a 2 ..... a n are constants and x 1 , x 2 ..... x n a

Binomial, how do you find the co=efficent when there are two brackets invol...

how do you find the co=efficent when there are two brackets involved?

Integral calculus, how to change order and variable in multiple integral

how to change order and variable in multiple integral

Calculus three, i would like answers to these questions i will give you as ...

i would like answers to these questions i will give you as soon as possible

Calculus , Mean, variance, skewness and kurtosis of a probability density f...

Mean, variance, skewness and kurtosis of a probability density function f(r)that has a distribution of a passive scalar filed in a stationary isotropic turbulence for initial condi

Calculate the average return, A department store faces a decision for a sea...

A department store faces a decision for a seasonal product for which demand can be high, medium or low. The purchaser can order 1, 2 or 3 lots of this product before the season beg

Solid mensuration, Find the are of the rectilinear.if it is the difference ...

Find the are of the rectilinear.if it is the difference between to isosceles trapezoid whose corrsponding sides are parallel.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd