Example of integration strategy - integration techniques, Mathematics

Assignment Help:

Evaluate the subsequent integral.

∫ (tan x/sec4 x / sec4 x)  dx

Solution

This kind of integral approximately falls into the form given in 3c.  It is a quotient of tangent and secant and we are familiar with that sometimes we can use similar methods or techniques for products of tangents and secants on quotients.

The procedure from that section tells us that if we have even powers of secant to strip two of them off and transform the rest to tangents. That won't able to work here. We can split two secants off, but they would be in the denominator and they would not do us any good there.  Keep in mind that the point of splitting them off is thus they would be there for the substitution u = tan x .  That needs them to be in the numerator.  Thus, that won't work and so we will have to find out another solution method.

Actually there are two solution methods to this integral depending upon how you want to go about it. We'll take a look at both.

Solution 1

In this solution technique we could just convert all to sines and cosines and see if that provides us an integral we can deal with.

∫(tan x / sec4 x) (dx)

= ∫ (sin x / cos x) cos4 x dx

= ∫ sin x cos3 x dx                                u=cos x

= -∫ u3 du

= - ¼ cos4 x + c

Note that just transforming to sines and cosines won't all time work and if it does it won't always work this adequately.  Frequently there will be so many works that would require to be done to complete the integral.

Solution 2

This solution technique goes back to dealing with secants and tangents.  Let us notice that if we had a secant in the numerator we could just employ u = sec x as a substitution and it would be a quite quick and simple substitution to use. We do not have a secant in the numerator.  Though, we could very easily get a secant in the numerator merely by multiplying the numerator and denominator by secant.

∫ (tan x / sec4 x) dx

= ∫ (tan x sec x / sec5 x) dx                                          u = sec x

= ∫ 1/u5 (du)

= - (1/4) (1/sec4 x) + c

 = - ¼ cos4 x+c


Related Discussions:- Example of integration strategy - integration techniques

Decision-making under conditions of uncertainty, Decision-Making Under Cond...

Decision-Making Under Conditions of Uncertainty With decision making under uncertainty, the decision maker is aware of different possible states of nature, but has insufficient

Algebra, solve x+y= 7 and x-y =21

solve x+y= 7 and x-y =21

Standard trig equation, "Standard" trig equation: Now we need to move into...

"Standard" trig equation: Now we need to move into a distinct type of trig equation. All of the trig equations solved to this point were, in some way, more or less the "standard"

Determine the property of partial ordered relation, Determine the property ...

Determine the property of Partial ordered relation Question: Partial ordered relation is transitive, reflexive and  Answer: antisymmetric

Defining real numbers, The numbers used to measure quantities such as lengt...

The numbers used to measure quantities such as length, area, volume, body temperature, GNP, growth rate etc. are called real numbers. Another definition of real numbers us

Whats this, how do you determine if a graph has direct variation

how do you determine if a graph has direct variation

Example for articulate reasons and construct arguments, A Class 4 teacher w...

A Class 4 teacher was going to teach her class fractions. At the beginning of the term she asked the children, "If you had three chocolates, and wanted to divide them equally among

What is unreducing fractions, Q, Did you know that you can unreduce a fract...

Q, Did you know that you can unreduce a fraction? Ans. Remember, you reduce a fraction by dividing the numerator and denominator by the same numbers. Here we divide

VECTOR, the sum of the vector QR, -SR, TQ and 2ST is?

the sum of the vector QR, -SR, TQ and 2ST is?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd