Principle of superposition, Mathematics

Assignment Help:

If y1 (t) and y2 (t) are two solutions to a linear, homogeneous differential equation thus it is y (t ) = c1 y1 (t ) + c2 y2 (t )   ........................(3)

Remember that we didn't comprise the restriction of constant coefficient or second order in this. It will work for any linear homogeneous differential equation.

If we further suppose second order and one other condition that we'll provide in a second we can go a step further.

If y1 (t) and y2 (t) are two solutions to a linear, second order homogeneous differential equation and they are "nice enough" so the general solution to the linear, second order differential equation is specified by (3).

So, just what do we mean by "nice enough"?  We'll hold off on that until a later section.  At this point you'll hopefully believe it when we say that specific functions are "nice enough".

Thus, if we now make the assumption as we are dealing along with a linear, second order differential equations, we now identify that (3) will be its general solution. The subsequent question which we can ask is how to get the constants c1 and c2. Because we have two constants it makes sense, confidently, which we will require two equations or conditions to get them.

One manner to do this is to identify the value of the solution at two distinct points or

y (t0) =  y0

 y (t1) = y1

 These are usually termed as boundary values and are not actually the focus of this course thus we won't be working along with them.

The other way to get the constants would be to identify the value of the solution and its derivative at an exacting point.  Or,

 y (t0) =  y0

 y′ (t0) = y0

These are the two conditions which we'll be using here. When with the first order differential equations these will be termed as initial conditions.


Related Discussions:- Principle of superposition

#title.algebra., how do i understand algebra? whats the formula i just dont...

how do i understand algebra? whats the formula i just dont get it

GEOMETRIC PROGRESSION, THE FIRST AND THIRD TERM OF A G.P ARE 8 AND 18 RESPE...

THE FIRST AND THIRD TERM OF A G.P ARE 8 AND 18 RESPECTIVELY AND THE COMMON RATIO IS POSITIVE.FIND THE COMMON RATIO

Find the middle term of the arithmetic progressions, Find the middle term o...

Find the middle term of the AP 1, 8, 15....505. A ns:    Middle terms a + (n-1)d = 505 a + (n-1)7 = 505 n - 1 = 504/7 n = 73 ∴ 37th term is middle term a 37

Proof of various derivative facts formulas properties, PROOF OF VARIOUS DER...

PROOF OF VARIOUS DERIVATIVE FACTS/FORMULAS/PROPERTIES Under this section we are going to prove several of the different derivative facts, formulas or/and properties which we en

Integrals involving quadratics - integration techniques, Integrals Involvin...

Integrals Involving Quadratics To this point we have seen quite some integrals which involve quadratics.  Example of Integrals Involving Quadratics is as follow: ∫ (x / x 2

How to introduce a child to the symbol for zero, A 'woman was trying to tea...

A 'woman was trying to teach her three-year-old child the numbers from 1to 5 from a children's book on numbers. Each number was illustrated by the same number of trees drawn next t

Solve cos( 4 ) = -1 trig function, Solve cos( 4 θ ) = -1 . Solution ...

Solve cos( 4 θ ) = -1 . Solution There actually isn't too much to do along with this problem.  However, it is different from all the others done to this point.  All the oth

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd