Find out height of the box which will give maximum volume, Mathematics

Assignment Help:

We contain a piece of cardboard i.e. 14 inches by 10 inches & we're going to cut out the corners as illustrates below and fold up the sides to form a box, also illustrated below. Find out the height of the box which will give a maximum volume.

755_maximum volume.png

 Solution : In this instance, for the first time, we've run into problem where the constraint doesn't actually have an equation. The constraint is just the size of the piece of cardboard and has been factored already into the figure above. It will take place on occasion and therefore don't get excited about it when it does. It just means that we have one less equation to worry about. In this case we desire to maximize the volume. Following is the volume, in terms of h and its first derivative.

V ( h ) = h (14 - 2h ) (10 - 2h ) = 140h - 48h2 + 4h3

V ′ ( h ) = 140 - 96h + 12h2

Setting the first derivative equivalent to zero & solving gives the following two critical points,

h = (12 ±√39)/3 = 1.9183,  6.0817

Now we have clear problem.  We have two critical points & we'll have to determine which one is the value we required.  In this case, it is easier than it looks.  Go back to the figure in the difficulty statement & notice that we can quite simply determine limits on h. The smallest h can be is h = 0 even though it doesn't make much sense as we won't obtain a box in this case. Also from the 10 inch side we can illustrate that the largest h can be is h = 5 although again, it doesn't make much sense physically.

Thus, knowing that whatever h is it has to be in the range 0 ≤ h ≤ 5 we can illustrates that the second critical point is outside of this range and thus the only critical point that we required to worry about is 1.9183.

At last, as the volume is described and continuous on 0 ≤ h ≤ 5 all we have to do is plug in the critical points & endpoints into the volume to find out which gives the largest volume.  Following are those function evaluations.

V (0) = 0         V (1.9183) = 120.1644                          V (5) =0

Therefore, if we take h = 1.9183 we obtain a maximum volume.


Related Discussions:- Find out height of the box which will give maximum volume

Calculate the value of expected value, The owner of TMH Hospital wants to o...

The owner of TMH Hospital wants to open a new facility in a certain area. He usually builds 25-, 50-, or 100-bed facilities, depending on whether anticipated demand is low, medium

X and y -intercept, X-intercept  If an intercept crosses the x-axis we ...

X-intercept  If an intercept crosses the x-axis we will call it as x-intercept .  Y-intercept Similar, if an intercept crosses the y-axis we will call it as a y-inter

Statistics, Calculate the Kendaul''s correlation cofficient for a given dat...

Calculate the Kendaul''s correlation cofficient for a given data.

find the present age, 5 years however, a man's age will be 3times his son'...

5 years however, a man's age will be 3times his son's age and 5 years ago, he was 7 times as old as his son.    Find their present ages.

Question, What is a marketing plan

What is a marketing plan

Shares and dividend, A man buys rs50 shares of a company paying 12% of divi...

A man buys rs50 shares of a company paying 12% of dividendat premium ofof rs10 find market value of 320 shares and profit%

Elimination, Eliment t from following equations v=u+at s=ut+1/2at^2

Eliment t from following equations v=u+at s=ut+1/2at^2

The new area is 168 square inches how many inches increase, A 4-inch by 6-i...

A 4-inch by 6-inch photograph is going to be enlarged through increasing each side by the similar amount. The new area is 168 square inches. How many inches is each dimension incre

Slope, One of the more significant ideas that we'll be discussing in this s...

One of the more significant ideas that we'll be discussing in this section is slope. The slope of a line is a measure of the steepness of any particular line and it can also be uti

Differential equation, Find the normalized differential equation which has ...

Find the normalized differential equation which has {x, xe^x} as its fundamental set

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd