Substitution technique of linear equations - linear algebra, Mathematics

Assignment Help:

What is Substitution Technique of Linear Equations?


Related Discussions:- Substitution technique of linear equations - linear algebra

Given x+1/x=2cosy then find x^n +1/x^n, Here we know x can only be 1 or -1...

Here we know x can only be 1 or -1. so if it is 1 ans is 2. if x is -1, for n even ans will be 2 if x is -1 and n is odd ans will ne -2. so we can see evenfor negative x also an

Ratios, a doctor sees 3 boys to 5 girls in one week . If he sees 40 boys in...

a doctor sees 3 boys to 5 girls in one week . If he sees 40 boys in one day then how many girls does he see that day

Properties of dot product - proof, Properties of Dot Product - proof P...

Properties of Dot Product - proof Proof of: If v → • v → = 0 then v → = 0 → This is a pretty simple proof.  Let us start with v → = (v1 , v2 ,.... , vn) a

Set builder notation, A={2,3,5,7,11} B={1,3,5,7,9} C={10,20,30,40,......100...

A={2,3,5,7,11} B={1,3,5,7,9} C={10,20,30,40,......100} D={8,16,24,32,40} E={W,O,R,K} F={Red,Blue,Green} G={March,May} H={Jose,John,Joshua,Javier} I={3,6,9,12,15}

Determine the probability , A medical survey was conducted in order to esta...

A medical survey was conducted in order to establish the proportion of the population which was infected along with cancer. The results indicated that 40 percent of the population

Solve cos( 4 ) = -1 trig function, Solve cos( 4 θ ) = -1 . Solution ...

Solve cos( 4 θ ) = -1 . Solution There actually isn't too much to do along with this problem.  However, it is different from all the others done to this point.  All the oth

Proof of constant times a function, Proof of Constant Times a Function: ...

Proof of Constant Times a Function: (cf(x))′ = cf ′(x) It is very easy property to prove using the definition given you a recall, we can factor a constant out of a limit. No

james

2/12/2013 3:09:01 AM

To demonstrate Substitution technique, consider the system of two equations (i). and (ii) reproduced underneath as:

            2x - 3y = 8 ........          (i).

            3x + 4y = -5 ......           (ii).

The solution of such system can be acquired by

1) Solving one of the equations for one variable in terms of other variable;

2) Substituting this value into the another equation(s) thereby getting an equation along with one unknown only

3) at last Solving this equation for its single variable

4) Substituting this value into any one of the two original equations as like to receive the value of the second variable

Step 1

Solve equation (i) for variable x in terms of y

2x - 3y = 8

x= 4 + (3/2) y   (iii)

Step 2

Substitute this value of x into equation (ii). And get an equation in y only

3x + 4y = -5

3 (4 + (3/2) y) + 4y = -5

8 ½ y = - 17 .......          (iv)

Step 3

Solve the equation (iv). For y

8½y = -17

y = -2

Step 4

Substitute this value of y into equation (i) or (iii) and get the value of x

2x - 3y = 8

2x - 3(-2) = 8

x = 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd