Substitution technique of linear equations - linear algebra, Mathematics

Assignment Help:

What is Substitution Technique of Linear Equations?


Related Discussions:- Substitution technique of linear equations - linear algebra

Change of base of logarithms, Change of base: The final topic that we have...

Change of base: The final topic that we have to look at in this section is the change of base formula for logarithms. The change of base formula is,

Service marketing, assignment of marketing mix on healthservices

assignment of marketing mix on healthservices

Differentiation formulas, Differentiation Formulas : We will begin this s...

Differentiation Formulas : We will begin this section with some basic properties and formulas.  We will give the properties & formulas in this section in both "prime" notation &

Union and intersection - set theory, Union and Intersection - Set theory ...

Union and Intersection - Set theory B ∩ C indicates the intersection of B and C. it is the set having all those elements that belong to both B and C If B = {5, 8, 11, 20, 2

How does the algorithm work?, How Does The Algorithm Work? Most of us, ...

How Does The Algorithm Work? Most of us, when asked to multiply, say, 35 by 23, write Why do we place the mark x (or 0, or leave a blank) in the second row of the calcul

Write down two more reasons why division is difficult, Write down two more ...

Write down two more reasons why children consider 'division' difficult. Regarding the first reason given above, one of fie few division related experiences that the child perhaps d

Determine the angle, In parallelogram ABCD, m∠A = 3x + 10 and m∠D = 2x + 30...

In parallelogram ABCD, m∠A = 3x + 10 and m∠D = 2x + 30, Determine the m∠A. a. 70° b. 40° c. 86° d. 94° d. Adjacent angles in a parallelogram are supplementary. ∠A a

james

2/12/2013 3:09:01 AM

To demonstrate Substitution technique, consider the system of two equations (i). and (ii) reproduced underneath as:

            2x - 3y = 8 ........          (i).

            3x + 4y = -5 ......           (ii).

The solution of such system can be acquired by

1) Solving one of the equations for one variable in terms of other variable;

2) Substituting this value into the another equation(s) thereby getting an equation along with one unknown only

3) at last Solving this equation for its single variable

4) Substituting this value into any one of the two original equations as like to receive the value of the second variable

Step 1

Solve equation (i) for variable x in terms of y

2x - 3y = 8

x= 4 + (3/2) y   (iii)

Step 2

Substitute this value of x into equation (ii). And get an equation in y only

3x + 4y = -5

3 (4 + (3/2) y) + 4y = -5

8 ½ y = - 17 .......          (iv)

Step 3

Solve the equation (iv). For y

8½y = -17

y = -2

Step 4

Substitute this value of y into equation (i) or (iii) and get the value of x

2x - 3y = 8

2x - 3(-2) = 8

x = 1

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd