Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Write the Liang B arsky line clipping algorithm. Why is Liang Barsky algorithm more efficient than the Cohen Sutherland algorithm?
Liang Barsky Line Clipping: Faster line clippers have been developed that are based an analysis of the parametric equation of a line segment, Which we can write in the form: where using these parametric equation Cyrus and Beck developed an alga that is generally more efficient than the Cohen Sutherland alga. Later Liang and Barsky independently devised an even faster parametric line clipping alga. In this first write the paint clipping conditions in the parametric form: each of these four inequalities can be expressed as: where parameters p and q are defined. Any line that is parallel to one of the clipping boundaries has pk = 0 for the value of k corresponding to that boundaries ( k = 1, 2, 3, and 4 correspond to the left, right, bottom and top boundaries ) If for the value of k we also find qk < 0, then line is completely outside the boundary and can be eliminated from further consideration. If qk > 0, the infinite extension of the line processed from the outside to the inside of the infinite extension of this particular clipping boundary. If pk > 0 the line proceeds from the inside to the outside. For a nonzero value of p k, we can calculate the value of u that corresponds to the point where the infinitely extended line intersects the extension of boundary k. For each line, we can calculate values for parameters u1 and u2 that define that part of the line that lies within the clip rectangle. The value of r is determined by looking at the rectangle edges for which the line proceeds from the outside to the inside . For these edges we calculate. The value of as taken as the largest of the set consisting of 0 and the various values of r. Conversely the value of is determined by examining the boundaries for which the line proceeds from inside to outside. A value of r is calculated for each of these boundaries, and the value of is the minimum of the set consisting of 1 and the calculated r values. If u1 > u2 the line is completely outside the clip window and of can be rejected. Otherwise the endpoints of the clipped line are calculated from the two values of parameter u. This algorithm is presented in the following procedure, Line intersection parameters are initialized to the values u1 = 0 and u2 = 1. For each clipping boundary the appropriate values for p and q are calculated and rsed by the function clip test to determine whether the line can be rejected of whether the intersection parameters are to be adjusted. When p > 0, the parameter r is used to update u1; when p > 0 parameter r is used to update u. If updating u1 or u2 results in u1 > u2 we reject the line. Otherwise we update the appropriate u parameter only if the new value results in a shortening of the line. When p = 0 and q < 0 we can discard the line since it is parallel to and outside of this boundary If the line has not been rejected after all four values of p and q have been tested, the endpoints of the clipped line are determined from values of u1 and u2.
Efficiency of Liang Algorithm than Cohen Sutherland algorithm: The Liang-Barky algorithm is more efficient than the Cohen Sutherland algorithm, since intersection calculations are reduced. Each update of parameters u and u requires only one division; and window intersections of the line are computed only once, when the final values of u and u have been computed. In contrast, the Cohen Sutherland algorithm can repeatedly calculate intersections along a line path, even though the line may be completely outside the clip window. And each intersection calculation requires both a division and a multiplication. Both the Cohen Sutherland and the Liang Barky algorithms can be extended to three dimensional clipping.
Soft Image and Strata Studio - Computer Animation SoftImage It is the one of most well known computer animation software packages. It is used in several top production
As we already seen that the scaling process is mainly utilized to change the size of an object. The scale factors find out whether the scaling is a magnification as s>1 or a red
Transformation for parallel projection Parallel projections is also termed as Orthographic projection, are projections into one of the coordinate planes as x = 0, y = 0 or z
Containment Test - visible surface detection Test: That is Containment test: it can be either comprised (contained) or surrounding polygon, if intersection test fails. The
Achieve a perspective projection on the z = 0 plane of the unit cube, demonstrated in Figure (l) from the cop at E (0, 0, 10) upon the z-axis. Figure: I 01: currently c
Draw and explain the diagram of a Raster scan system with a display processor. Explain each unit of the diagram.
Types of Bitmap Images Bitmap images can include any number of colours but we distinguish among four main categories as: 1) Line-art: These are images that include
Transformation for 3-D Scaling As we already seen that the scaling process is mainly utilized to change the size of an object. The scale factors find out whether the scaling i
Animation, Video and Digital Movies : These are sequences of bitmapped graphic scenes or frames, quickly played back. But animations can also be made inside the authoring system t
plz difine types of chractar genration..
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd