Liang b arsky line clipping algorithm, Computer Graphics

Assignment Help:

Write the Liang B arsky line clipping algorithm. Why is Liang Barsky algorithm more efficient than the Cohen Sutherland algorithm? 

Liang Barsky Line Clipping: Faster line clippers have been developed that are based an analysis of the parametric equation of a line segment, Which we can write in the form: where using these parametric equation Cyrus and Beck developed an alga that is generally more efficient than the Cohen Sutherland alga. Later Liang and Barsky independently devised an even faster parametric line clipping alga. In this first write the paint clipping conditions in the parametric form: each of these four inequalities can be expressed as: where parameters p and q are defined.  Any line that is parallel to one of the clipping boundaries has pk­ = 0 for the value of k corresponding to that boundaries ( k = 1, 2, 3, and 4 correspond to the left, right, bottom and top boundaries ) If for the value of k we also find qk < 0, then line is completely outside the boundary and can be eliminated from further consideration. If qk > 0, the infinite extension of the line processed from the outside to the inside of the infinite extension of this particular clipping boundary. If pk > 0 the line proceeds from the inside to the outside. For a nonzero value of p k, we can calculate the value of u that corresponds to the point where the infinitely extended line intersects the extension of boundary k.  For each line, we can calculate values for parameters u­1 and u2 that define that part of the line that lies within the clip rectangle. The value of r is determined by looking at the rectangle edges for which the line proceeds from the outside to the inside . For these edges we calculate. The value of as taken as the largest of the set consisting of 0 and the various values of r. Conversely the value of is determined by examining the boundaries for which the line proceeds from inside to outside. A value of r is calculated for each of these boundaries, and the value of is the minimum of the set consisting of 1 and the calculated r values. If u1 > u2 the line is completely outside the clip window and of can be rejected. Otherwise the endpoints of the clipped line are calculated from the two values of parameter u.  This algorithm is presented in the following procedure, Line intersection parameters are initialized to the values u1 = 0 and u2 = 1. For each clipping boundary the appropriate values for p and q are calculated and rsed by the function clip test to determine whether the line can be rejected of whether the intersection parameters are to be adjusted. When p > 0, the parameter r is used to update  u1; when p > 0 parameter r is used to update u. If updating u­1 or u2 results in u1 > u2 we reject the line. Otherwise we update the appropriate u parameter only if the new value results in a shortening of the line. When p = 0 and q < 0 we can discard the line since it is parallel to and outside of this boundary If the line has not been rejected after all four values of p and q have been tested, the endpoints of the clipped line are determined from values of u1 and u­­2.

Efficiency of Liang Algorithm than Cohen Sutherland algorithm: The Liang-Barky  algorithm is more efficient than the Cohen Sutherland algorithm, since intersection calculations are reduced. Each update of parameters u and u requires only one division; and window intersections of the line are computed only once, when the final values of u and u have been computed. In contrast, the Cohen Sutherland algorithm can repeatedly calculate intersections along a line path, even though the line may be completely outside the clip window. And each intersection calculation requires both a division and a multiplication. Both the Cohen Sutherland and the Liang Barky algorithms can be extended to three dimensional clipping. 


Related Discussions:- Liang b arsky line clipping algorithm

What are spot colours, Question 1: Name at least four file formats an...

Question 1: Name at least four file formats and explain in detail what they mean and how they are use? Question 2: What are "Process Colours"? Answer in a single para

Historical method – oral tradition, Historical method - Oral tradition: ...

Historical method - Oral tradition: Only the teacher was the source of information The teacher treated as a role model. The teacher was the main resource to meet indiv

File format-introduction to computer graphics, File format We want an i...

File format We want an image of a Fly. The wings are incompletely transparent and to present that in our presentation what be problematic if suitable file format is not there.

Plane equation - curves and surfaces, Plane Equation - Curves and Surfaces ...

Plane Equation - Curves and Surfaces Plane is a polygonal surface that bisects its environment in two halves. One is termed to as forward and another as backward half of som

Rotation - 2-d and 3-d transformations, Rotation - 2-d and 3-d transformati...

Rotation - 2-d and 3-d transformations Given a 2-D point P(x,y), that we want to rotate, along with respect to an arbitrary point A(h,k). Suppose P'(x'y') be the effect of ant

You, are you a robot

are you a robot

Advantages and deficiencies of gourand shading, Advantages and Deficiencies...

Advantages and Deficiencies of Gourand Shading Advantages of Gourand Shading: this eliminates the intensity discontinuities related with the constant shading model. Defi

Illustration of a clipping window - raster graphics, Illustration of a Clip...

Illustration of a Clipping window ABCD is placed as follows: A (100, 10), B (160, 10, C (160, 40), D (100, 40) By using Sutherland-Cohen clipping algorithm determine the vis

Draw the letters s, Draw the letters S, P, R or U of English alphabet using...

Draw the letters S, P, R or U of English alphabet using multiple Bézier curves.  A complete code for plotting Bezier curves is given previously. There in the code, control point

Basic transformations - 2-d and 3-d transformations, Basic Transformations ...

Basic Transformations - 2-d and 3-d Transformations Consider the xy-coordinate system upon a plane. An object or Obj in a plane can be identified as a set of points. All objec

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd