Introduction of 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Introduction of 2-D and 3-D  Transformations

In this, the subsequent things have been discussed in detail as given below:

  • Different geometric transformations as translation, scaling, reflection, shearing and rotation.
  • Translation, Reflection and Rotation transformations are utilized to manipulate the specified object, where Shearing and Scaling both transformation changes their sizes.
  • Translation is the process of altering the position but not the shape/size, of an object with respect to the origin of the coordinate axes.
  • In 2-D rotation, an object is rotated via an angle θ. There are two cases of 2-Dimentional rotation: case1- rotation regarding to the origin and case2- rotation regarding to an arbitrary point. Consequently, in 2-D, a rotation is prescribed by an angle of rotation θ and a centre of rotation, as P. Conversely, in 3-D rotations, we require to mention the angle of rotation and the axis of rotation.
  • Scaling process is mostly utilized to change the shape or size of an object. The scale factors find out whether the scaling is a magnification, s>1 or a reduction as s<1.
  • Shearing transformation is a particular case of translation. The consequence of this transformation looks like "pushing" a geometric object in a direction which is parallel to a coordinate plane as 3D or a coordinate axis as 2D. How far a direction is pushed is found by its shearing factor.
  • Reflection is a transformation that generates the mirror image of an object. For reflection we require to know the reference axis or reference plane depending upon where the object is 2-D or 3-D.
  • Composite transformation engages more than one transformation concatenated in a particular matrix. Such process is also termed as concatenation of matrices. Any transformation made about an arbitrary point makes use of composite transformation as Rotation regarding to an arbitrary point, reflection regarding to an arbitrary line, and so on.
  • The utilization of homogeneous coordinate system to shows the translation transformation into matrix form, enlarges our N-coordinate system along with (N+1) coordinate system.

Related Discussions:- Introduction of 2-d and 3-d transformations

Resolution-introduction to computer graphics, Resolution Graphic demons...

Resolution Graphic demonstrations are utilized in presentations to assist convey a concept or express a mood, two kinds of demonstrations graphics are: Vector, and B

Example of bezier curves - modeling and rendering, To prove: P (u = 0) = p0...

To prove: P (u = 0) = p0 Solution : = p 0 B n,0 (u) + p 1 B n, 1 (u) +...... + p n B n, n (u)...............(1)  B n,i (u) = n c i u i (1 - u) n-i B n,0

Image space -approaches for visible surface determination, Image Space Appr...

Image Space Approach -Approaches for visible surface determination The initial approach as image-space, determines that of n objects in the scene is visible at every pixel in

Derive the common transformation of parallel projection, Derive the common ...

Derive the common transformation of parallel projection into the xy-plane in the direction of projection d=aI+bJ+cK. Solution: The common transformation of parallel projection

Image editing tools in multimedia, Image Editing Tools These are specia...

Image Editing Tools These are specializing and influential tools for enhancing and re-touching existing bit-mapped images. Such applications also give several of the features a

What do you understand by the term image compositing, Question 1: (a) E...

Question 1: (a) Explain in detail what you understand by the term image compositing and where it is more often used? (b) You are given 3-5 images to make a photo montage/ima

Operation reseach, #question. Steps involved in the solution of operation r...

#question. Steps involved in the solution of operation research problem

Convex shaped window and concave or non convex shaped window, Well you migh...

Well you might surprise to what a convex window? In common, on the basis of the shapes the windows are categorized into two classes: i) A Convex shaped windows: Windows of a s

Windowing transformations - raster graphics and clipping, Windowing Transf...

Windowing Transformations - Raster Graphics and  Clipping From the above section of introduction, we understood the meaning of the viewport and term window that could again be

Translation - 2-d and 3-d transformations, Translation - 2-d and 3-d Transf...

Translation - 2-d and 3-d Transformations It is the process of changing the position of an object. Suppose an object point P(x,y)=xI+yJ be moved to P'(x',y') by the specified

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd