Eigenvalues and eigenvectors, Mathematics

Assignment Help:

If you find nothing out of this rapid review of linear algebra you should get this section.  Without this section you will not be capable to do any of the differential equations work which is into this section.

Therefore let's start with the subsequent. If we multiply an n x n matrix with an n x 1 vector we will find a new n x 1 vector back.  Conversely,

A?h= y?

What we want to know is if it is possible for the following to happen.  Instead of just getting a brand new vector out of the multiplication is it possible instead to find the following,

 A?h=l?h

Conversely is it possible, at least for specific λ and ?h, to contain matrix multiplication be similar as just multiplying the vector by a constant? Obviously, we probably wouldn't be talking regarding to this if the answer was no. Thus, it is possible for this to occur, however, it won't occur for just any value of λ or?h. If we do occur to have a λ and‾?h for that this works (and they will λ always come in pairs) so we call λ an eigen-value of A and ?h an eigenvector of A.

Thus, how do we go about find the eigen-values and eigenvectors for a matrix? Well firstly see that if ?h= 0 then (1) is intended for be true for any value of λ and therefore we are going to make the assumption that

‾?h≠ 0?,

With such out of the way let's rewrite (1) a little.

A?h - l?h = 0?

A?h - In l?h = 0?

(A - In l) ?h= 0?

Remember that before we factored out the ?hwe added in the appropriately sized identity matrix. It is equivalent to multiplying things with a one and so doesn't modify the value of anything.

Therefore, with this rewrite we notice that

(A - lIn) ?h = 0?

It s equivalent to eq.(1). So as to find the eigenvectors for a matrix we will require solving a homogeneous system. Recall the fact from the earlier section which we know that we will either contain exactly one solution (?h = 0?) or we will have infinitely several nonzero solutions. As we've already said as don't needs this means that we want the second case.

 Knowing it will permit us to find the eigenvalues for a matrix.  Recall from such fact which we will get the second case only if the matrix in the system is particular. Thus we will require determining the values of λ for that we get,

det (A - l I ) = 0

Once we have the eigen-values we can after that go back and find out the eigenvectors for each eigen-value.

To determine eigenvalues of a matrix all we require to do is solve a polynomial. It is generally not too bad provided we maintain n small. Similarly in above also we see that for an nxn matrix, matrix A, we will contain n eigenvalues if we comprise all repeated eigenvalues.

The usefulness of these facts will become apparent when we get back into differential equations as wherein work we will want linearly independent solutions.

Let's work a couple of illustrations now to check how we in fact go about finding eigen-values and eigenvectors.


Related Discussions:- Eigenvalues and eigenvectors

Relationship between inverse and sine function, Relationship between the in...

Relationship between the inverse sine function and the sine function We have the given relationship among the inverse sine function and the sine function.

Calculate time interval, From top of a tower a stone is thrown up and it re...

From top of a tower a stone is thrown up and it reaches the ground in time t1. A second stone is thrown down with the same speed and it reaches the ground in t2. A third stone is r

Difference between absolute and relative in the definition, Difference betw...

Difference between absolute and relative in the definition Now, let's talk a little bit regarding the subtle difference among the absolute & relative in the definition above.

Evaluate the following exponentials limit, Evaluate following limits. ...

Evaluate following limits. Solution: Let's begin this one off in the similar manner as the first part. Let's take the limit of each piece. This time note that since our l

Determine the numbers of sides in regular polygon, If each interior angle o...

If each interior angle of a regular polygon has a calculated as of 144 degrees, Determine the numbers of sides does it have? a. 8 b. 9 c. 10 d. 11   c. The measur

Statistical inference, Statistical inference This is the process of dra...

Statistical inference This is the process of drawing conclusions about attributes of a population based upon information contained in a sample or taken from the population.

0^0, what is the value of zero to the power raised to zero?

what is the value of zero to the power raised to zero?

Monomial, express the area of a square with sides of length 5ab as monomial...

express the area of a square with sides of length 5ab as monomial

Daily revenue for next 30 days, Owner of a computer repair shop has daily r...

Owner of a computer repair shop has daily revenue with mean $7200 and SD $1200 Daily revenue for next 30 days will be monitored. What is probability that daily revenue for those 30

Product moment coefficient, Product Moment Coefficient This gives an i...

Product Moment Coefficient This gives an indication of the strength of the linear relationship among two variables. Note that this formula can be rearranged to have di

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd