Eigenvalues and eigenvectors, Mathematics

Assignment Help:

If you find nothing out of this rapid review of linear algebra you should get this section.  Without this section you will not be capable to do any of the differential equations work which is into this section.

Therefore let's start with the subsequent. If we multiply an n x n matrix with an n x 1 vector we will find a new n x 1 vector back.  Conversely,

A?h= y?

What we want to know is if it is possible for the following to happen.  Instead of just getting a brand new vector out of the multiplication is it possible instead to find the following,

 A?h=l?h

Conversely is it possible, at least for specific λ and ?h, to contain matrix multiplication be similar as just multiplying the vector by a constant? Obviously, we probably wouldn't be talking regarding to this if the answer was no. Thus, it is possible for this to occur, however, it won't occur for just any value of λ or?h. If we do occur to have a λ and‾?h for that this works (and they will λ always come in pairs) so we call λ an eigen-value of A and ?h an eigenvector of A.

Thus, how do we go about find the eigen-values and eigenvectors for a matrix? Well firstly see that if ?h= 0 then (1) is intended for be true for any value of λ and therefore we are going to make the assumption that

‾?h≠ 0?,

With such out of the way let's rewrite (1) a little.

A?h - l?h = 0?

A?h - In l?h = 0?

(A - In l) ?h= 0?

Remember that before we factored out the ?hwe added in the appropriately sized identity matrix. It is equivalent to multiplying things with a one and so doesn't modify the value of anything.

Therefore, with this rewrite we notice that

(A - lIn) ?h = 0?

It s equivalent to eq.(1). So as to find the eigenvectors for a matrix we will require solving a homogeneous system. Recall the fact from the earlier section which we know that we will either contain exactly one solution (?h = 0?) or we will have infinitely several nonzero solutions. As we've already said as don't needs this means that we want the second case.

 Knowing it will permit us to find the eigenvalues for a matrix.  Recall from such fact which we will get the second case only if the matrix in the system is particular. Thus we will require determining the values of λ for that we get,

det (A - l I ) = 0

Once we have the eigen-values we can after that go back and find out the eigenvectors for each eigen-value.

To determine eigenvalues of a matrix all we require to do is solve a polynomial. It is generally not too bad provided we maintain n small. Similarly in above also we see that for an nxn matrix, matrix A, we will contain n eigenvalues if we comprise all repeated eigenvalues.

The usefulness of these facts will become apparent when we get back into differential equations as wherein work we will want linearly independent solutions.

Let's work a couple of illustrations now to check how we in fact go about finding eigen-values and eigenvectors.


Related Discussions:- Eigenvalues and eigenvectors

PR Plan for Bloomington Bombers softball team, I need to come up with a PR ...

I need to come up with a PR plan for a fictitious women''s softball team. How much would something like that cost?

Caselets, how are indian customers visiting shoppers stop any different fro...

how are indian customers visiting shoppers stop any different from customers of developed western countries

QM II, A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. T...

A HOSPITAL CURRENTLY ORDERS SALINE AT THE BEGINNING OF EACH MONTH. THIS MONTH, THEY HAD 178 BAGS OF SALINE IN STOCK AND ORDERED 1,277 BAGS. DEMAND FOR SALINE IS NORMALLY DISTRIBUTE

Prove that the length of the altitude on the hypotenuse, If A be the area o...

If A be the area of a right triangle and b one of the sides containing the right angle, prove that the length of the altitude on the hypotenuse is 2  Ab /√ b 4 +4A 2 . An

Numerical analysis and computer techniques, write a fortan programme to gen...

write a fortan programme to generate prime number between 1 to 100

Ordinary and partial differential equations, A differential equation is ter...

A differential equation is termed as an ordinary differential equation, abbreviated through odes, if this has ordinary derivatives in it. Similarly, a differential equation is term

Horizontal asymptotes, Horizontal asymptotes : Such as we can have vert...

Horizontal asymptotes : Such as we can have vertical asymptotes defined in terms of limits we can also have horizontal asymptotes explained in terms of limits. Definition

Bayes’ theorem, Bayes’ Theorem In its general form, Bayes' theorem deal...

Bayes’ Theorem In its general form, Bayes' theorem deals with specific events, such as A 1 , A 2 ,...., A k , that have prior probabilities. These events are mutually exclusive

Laws of logarithms, express each logariths in terms of log3 P and log3 Q. 1...

express each logariths in terms of log3 P and log3 Q. 1. log3 P^2 Q^3

Logic, INSTRUCTIONS: Construct a regular proof to derive the conclusion of ...

INSTRUCTIONS: Construct a regular proof to derive the conclusion of the following argument: 1. H v (~T > R) 2. Hv (E > F) 3. ~T v E 4. ~H & D / R v F INSTRUCTIONS: Con

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd