Difference between absolute and relative in the definition, Mathematics

Assignment Help:

Difference between absolute and relative in the definition

Now, let's talk a little bit regarding the subtle difference among the absolute & relative in the definition above.

We will consist of an absolute maximum (or minimum) at x = c provided f(c) is the largest (or smallest) value that the function will ever take on the domain that we are working on.  Also, while we say the "domain we are working on" this just means the range of x's which we have selected to work with for a specified problem.  There might be other values of x that actually we can plug into the function however have excluded them for some cause.

A relative maximum or minimum is slightly different. All that's needed for a point to be a relative maximum or minimum is for that point to be maximum or minimum within some interval of x's around x = c .  There might be larger or smaller values of function at some other place, however relative to x = c , or local to x = c ,  f(c) is larger or smaller than all the other function values which are near it.

 Note that in order for a point to be a relative extrema we have to be able to look at function values on both sides of x = c to distinguish if it really is a maximum or minimum at that point. It means that relative extrema do not takes place at the end points of a domain.  They can only takes place interior to the domain.

There is in fact some debate on the preceding point. Some of the folks feel that relative extrema can takes places on the ending points of a domain.  Though, in this class we will be utilizing the definition that says that they can't takes place at the end points of a domain.

Usually it's easier to obtain a feel for the definitions by taking a look at a graph.

119_minimum.png

For the function illustrated in this graph we have relative maximums at x =b & x = d .  Both of point is a relative maximum as they are interior to the domain illustrated and are the largest point on the graph in some interval about the point. We also have a relative minimum at x = c as this point is interior to the domain & is the lowest point on the graph in an interval around it. The far right end point, x = e , will not be a relative minimum as it is an ending point.

The function will contain an absolute maximum at x = d & an absolute minimum at x = a .

These two points are the largest & smallest that the function will ever be. We can also note that for a function the absolute extrema will takes place at either the endpoints of the domain or at relative extrema. 

Let's see some instances to ensure that we have the definitions of absolute extrema & relative extrema straight.


Related Discussions:- Difference between absolute and relative in the definition

Find the integral of a function, We want to find the integral of a function...

We want to find the integral of a function at an arbitrary location x from the origin. Thus, where I(x=0) is the value of the integral for all times less than 0. (Essenti

Show that cos12+cos60+cos84=cos24+cos48 , L.H.S. =cos 12+cos 60+cos 84 =c...

L.H.S. =cos 12+cos 60+cos 84 =cos 12+(cos 84+cos 60) =cos 12+2.cos 72 . cos 12 =(1+2sin 18)cos 12 =(1+2.(√5 -1)/4)cos 12 =(1+.(√5 -1)/2)cos 12 =(√5 +1)/2.cos 12   R.H.S =c

Rounding decimals, i need help rounding decimals to the nearest 100th and t...

i need help rounding decimals to the nearest 100th and tenth

Area with parametric equations - polar coordinates, Area with Parametric Eq...

Area with Parametric Equations In this section we will find out a formula for ascertaining the area under a parametric curve specified by the parametric equations, x = f (t)

Find ad, A circle is inscribed in a triangle ABC having sides 8cm, 10cm and...

A circle is inscribed in a triangle ABC having sides 8cm, 10cm and 12cm as shown in the figure. Find AD, BE and CF.

Probability and statistics, f Y is a discrete random variable with expected...

f Y is a discrete random variable with expected value E[Y ] = µ and if X = a + bY , prove that Var (X) = b2Var (Y ) .

Objective functions, For schedule consistency, you decide to require each o...

For schedule consistency, you decide to require each officer to report for their eight-hour shift at 12 AM, 4 AM, 8 AM, 12 PM, 4 PM, or 8 PM. As the Director of Public Safety, you

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd