Evaluate the following exponentials limit, Mathematics

Assignment Help:

Evaluate following limits.

422_limit15.png

Solution: Let's begin this one off in the similar manner as the first part. Let's take the limit of each piece. This time note that since our limit is going to negative infinity the first three exponentials will actually go to zero (since their exponents go to minus infinity in the limit). The final two exponentials will go towards infinity in the limit (since their exponents go to plus infinity in the limit).

Taking limits gives,

504_limit16.png

Thus, the last two terms are the problem as they once again leave us with an indeterminate form.  We will factor out the "largest" exponent in the last two terms. However "largest" doesn't refer to the bigger of the two numbers (-2 is bigger than -15).  Rather than we're going to utilize "largest" to refer to the exponent i.e. farther away from zero.  By using this definition of "largest" means that we're going to factor out an e-15 x.

Again, remember that to factor out this all we actually are doing is dividing each of the term by e-15 x and then subtracting exponents. Following is the work for the first term as an example,

                                 e10 x /e-15 x = e10 x-( -15 x)= e25 x

As along the first part we can either factor out it of only the "problem" terms (that means the last two terms), or all the terms.  For the practice we'll factor it out of all the terms.  Following is the factoring work for this limit,

776_limit17.png

At last, after taking the limit of the two terms (the first is infinity & the second is a negative, finite number) and recalling the Facts through the Infinite Limit section we see that the limit is,

1622_limit18.png

At last, as you might have been capable to guess from the previous example while dealing with a sum and/or difference of exponentials all we have to do is look at the largest exponent to find out the behavior of the whole expression.  Again, recalling that if the limit is at plus infinity we just see at exponentials along with positive exponents & if we're looking at a limit at minus infinity we just see at exponentials with negative exponents.


Related Discussions:- Evaluate the following exponentials limit

Introduction to ones tens and more, INTRODUCTION :  We are often confronte...

INTRODUCTION :  We are often confronted with children not being able to deal with H T 0, i.e. 'hundreds', 'tens' and 'ones' (or 'units'), with comfort, though they are supposed to

Without a calculator give the exact value, without a calculator give the ex...

without a calculator give the exact value of each of the following logarithms. (a) (b) log1000 (c) log 16 16 (d) log 23 1  (e)  Solution (b) log10

Fractions, what is the lowest term of 11/121

what is the lowest term of 11/121

Permutation, A telephone dialled is numbered 0to9. if 0is dialled first the...

A telephone dialled is numbered 0to9. if 0is dialled first the caller is connected to the international exchange system.find the number of local calls that can be rung if a local n

Derivatives, What are the ingredients of a Mathematical Model? What is a mo...

What are the ingredients of a Mathematical Model? What is a model?

Converting, I need help converting my project fractions to the number 1.

I need help converting my project fractions to the number 1.

Evaluate limit in indeterminate form, Evaluate following limits. S...

Evaluate following limits. Solution In this case we also contain a 0/0 indeterminate form and if we were actually good at factoring we could factor the numerator & den

Bussiness, How do these websites help the company strengthen its relationsh...

How do these websites help the company strengthen its relationships with its stakeholders? List the website(s) that you previewed and give examples to support your answers. Who are

Find the radius of the inner circle, The area enclosed between two concentr...

The area enclosed between two concentric circles is 770cm 2 . If the radius of the outer circle is 21cm, find the radius of the inner circle. (Ans :14cm) Ans: Π R 2 - Π r 2 =

Defining real numbers, The numbers used to measure quantities such as lengt...

The numbers used to measure quantities such as length, area, volume, body temperature, GNP, growth rate etc. are called real numbers. Another definition of real numbers us

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd