Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
Computations are deliberate for processing information. Computability theory was discovered in the 1930s, and extended in the 1950s and 1960s. Its basic ideas have become part of the foundation that any computer scientist is expected to know. The study of computation intended for providing an insight into the characteristics of computations. Such an insight may be used for predicting the difficulty of desired computations, for selecting the approaches they should take, and for developing tools that facilitate their design. Study of computation also provides tools for identifying problems that can possibly be solved, as well as tools for designing such solutions that is the field of computer sciences deals with the development of methodologies for designing programs and with the development of computers for the implementation of programs.
The study of computability also develops precise and well-defined language for communicating perceptive thoughts about computations. It reveals that there are problems that cannot be solved. And of the problems that can be solved, there are some that require infeasible amount of resources (e.g., millions of years of computation time). These revelations might seem discouraging, but they have the benefit of warning against trying to solve such problems. The study of computation provides approaches for identifying such problems are also provided by the study of computation.
Computation should be studied through medium of programs because programs are descriptions of computations. The clear understanding of computation and programs requires clear discussion of the following concepts
• "Alphabets, Strings, and Representation • Formal languages and grammar• Programs• Problems• Reducibility among problems"
When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is
Let G be a graph with n > 2 vertices with (n2 - 3n + 4)/2 edges. Prove that G is connected.
And what this money. Invovle who it involves and the fact of,how we got itself identified candidate and not withstanding time date location. That shouts me media And answers who''v
When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program
To see this, note that if there are any cycles in the Myhill graph of A then L(A) will be infinite, since any such cycle can be repeated arbitrarily many times. Conversely, if the
1. An integer is said to be a “continuous factored” if it can be expresses as a product of two or more continuous integers greater than 1. Example of continuous factored integers
Prove that Language is non regular TRailing count={aa ba aaaa abaa baaa bbaa aaaaaa aabaaa abaaaa..... 1) Pumping Lemma 2)Myhill nerode
design a turing machine that accepts the language which consists of even number of zero''s and even number of one''s?
Construct a PDA that accepts { x#y | x, y in {a, b}* such that x ? y and xi = yi for some i, 1 = i = min(|x|, |y|) }. For your PDA to work correctly it will need to be non-determin
In general non-determinism, by introducing a degree of parallelism, may increase the accepting power of a model of computation. But if we subject NFAs to the same sort of analysis
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +1-415-670-9521
Phone: +1-415-670-9521
Email: info@expertsmind.com
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd