Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
We got the class LT by taking the class SL and closing it under Boolean operations. We have observed that LT ⊆ Recog, so certainly any Boolean combination of LT languages will also be recognizable. But what about the class of recognizable languages as a whole? Are Boolean combinations of recognizable (not just LT) languages also recognizable. In answering we can use the same methodology we use to show that any language is recognizable: consider what we need to keep track of in scanning a string in order to determine if it belongs to the language or not and then use that information to build our state set.
Suppose, then, that L = L1 ∩ L2, where L1 and L2 are both recognizable. A string w will be in L iff it is in both L1 and L2. Since they are recognizable there exist DFAs A1 and A2 for which L1 = L(A1) and L2 = L(A2). We can tell if the string is in L1 or L2 simply by keeping track of the state of the corresponding automaton. We can tell if it is in both by keeping track of both states simultaneously.
Normal forms are important because they give us a 'standard' way of rewriting and allow us to compare two apparently different grammars G1 and G2. The two grammars can be shown to
Let there L1 and L2 . We show that L1 ∩ L2 is CFG . Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the second
explain turing machine .
how to prove he extended transition function is derived from part 2 and 3
write short notes on decidable and solvable problem
program in C++ of Arden''s Theorem
Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph
This was one of the ?rst substantial theorems of Formal Language Theory. It's maybe not too surprising to us, as we have already seen a similar equivalence between LTO and SF. But
We saw earlier that LT is not closed under concatenation. If we think in terms of the LT graphs, recognizing the concatenation of LT languages would seem to require knowing, while
design a tuning machine for penidrome
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd