Structure of bipolar junction transistor, Electrical Engineering

Structure of Bipolar junction transistor:

 A BJT contains three differently doped semiconductor regions that are: emitter region, base region and collector region. These regions are p type, n type and p type correspondingly, in a PNP and n type, p type and n type correspondingly, in a NPN transistor. Every semiconductor region is connected to a terminal, properly entitled as: emitter (E), base (B) and collector (C).

The base is physically located among the emitter and the collector and is created from lightly doped and high resistivity material. The collector that surrounds the emitter region, creating it almost not possible for the electrons injected into the base region to escape being collected, so making the resulting value of α very close to unity, and so, providing the transistor a large β. A cross section view of a BJT points out that the collector-base junction has a much larger area than as compared to emitter-base junction.

The bipolar junction transistor, different from other transistors, is generally not a symmetrical device. Here this means that interchanging the collector and the emitter makes the transistor leave the forward active mode and begin to operate in reverse mode. Because the internal structure of transistor is generally optimized for forward-mode operation, interchanging the collector and the emitter makes the values of α and β in reverse operation much smaller than as compared to those in forward operation; frequently the α of the reverse mode is lower than 0.5. The lack of symmetry is primarily because of the doping ratios of the emitter and the collector. The emitter is heavily doped, whereas the collector is lightly doped, permitting a large reverse bias voltage to be applied before the collector-base junction breaks down. In normal operation the collector-base junction is reverse biased. The cause the emitter is heavily doped is to increase the emitter injection efficiency: the ratio of carriers injected via the emitter to those injected by the base. For high current gain, most of the carriers injected into the emitter-base junction have to come from the emitter.

Posted Date: 1/10/2013 6:39:32 AM | Location : United States







Related Discussions:- Structure of bipolar junction transistor, Assignment Help, Ask Question on Structure of bipolar junction transistor, Get Answer, Expert's Help, Structure of bipolar junction transistor Discussions

Write discussion on Structure of bipolar junction transistor
Your posts are moderated
Related Questions
Q. Design the low-pass filter shown in Figure (by determining L) to have a half-power frequency of 10 kHz.

Q. The speed of an 8-bit A/D converter is limited by the counter, which has a maximum speed of 4 × 10 7 counts per second. Estimate the maximum number of A/D conversions per secon

An n-channel depletion MOSFET, for which I DSS = 7mA and V P = 4 V, is said to be operating in the ohmic region with drain current i D = 1 mA when v DS = 0.8 V. Neglecting the

Q. Describe the basic types of Number Systems? Probably the largest stumbling block most beginning programmers encounter when attempting to learn assembly language is the commo

Q. A 10-turn square coil of side 200 mm is mounted on a cylinder 200 mm in diameter. If the cylinder rotates at 1800 r/min in a uniform 1.2-T field, determine the maximum value of


What are the broad principals that will be applied in product design to facilitate automated assembly ?

Military Services - Application of Software Defined Radio With the use of SDR technology, the military can reduce radio development costs by providing a common platform to whi

Q. A satellite radio transmitter has P in = 3 W and G t = 30 dB. The receiving antenna has a circular aperture with radius r at the ground station 30,000 km away. Find r in meter

For carry Flag JC (  jump on  Carry ) and JNC (Jump  on No carry ) Instructions : JC transfer the  execution of the  program to the  specified memory  address if  carry