Structure of bipolar junction transistor, Electrical Engineering

Structure of Bipolar junction transistor:

 A BJT contains three differently doped semiconductor regions that are: emitter region, base region and collector region. These regions are p type, n type and p type correspondingly, in a PNP and n type, p type and n type correspondingly, in a NPN transistor. Every semiconductor region is connected to a terminal, properly entitled as: emitter (E), base (B) and collector (C).

The base is physically located among the emitter and the collector and is created from lightly doped and high resistivity material. The collector that surrounds the emitter region, creating it almost not possible for the electrons injected into the base region to escape being collected, so making the resulting value of α very close to unity, and so, providing the transistor a large β. A cross section view of a BJT points out that the collector-base junction has a much larger area than as compared to emitter-base junction.

The bipolar junction transistor, different from other transistors, is generally not a symmetrical device. Here this means that interchanging the collector and the emitter makes the transistor leave the forward active mode and begin to operate in reverse mode. Because the internal structure of transistor is generally optimized for forward-mode operation, interchanging the collector and the emitter makes the values of α and β in reverse operation much smaller than as compared to those in forward operation; frequently the α of the reverse mode is lower than 0.5. The lack of symmetry is primarily because of the doping ratios of the emitter and the collector. The emitter is heavily doped, whereas the collector is lightly doped, permitting a large reverse bias voltage to be applied before the collector-base junction breaks down. In normal operation the collector-base junction is reverse biased. The cause the emitter is heavily doped is to increase the emitter injection efficiency: the ratio of carriers injected via the emitter to those injected by the base. For high current gain, most of the carriers injected into the emitter-base junction have to come from the emitter.

Posted Date: 1/10/2013 6:39:32 AM | Location : United States







Related Discussions:- Structure of bipolar junction transistor, Assignment Help, Ask Question on Structure of bipolar junction transistor, Get Answer, Expert's Help, Structure of bipolar junction transistor Discussions

Write discussion on Structure of bipolar junction transistor
Your posts are moderated
Related Questions
15 cells with emf for every cell are 1.5V and internal resistance 0.3Ω is linked in parallel. Calculate the value of current flow if the external resistance, 5Ω is linked to them.

Emitter bias: Figure: Emitter bias While a split supply (dual power supply) is accessible, this biasing circuit is the very much effective, and gives zero bias vo

Calculate Voltage and Current Phasors on a Phasor Diagram A synchronous motor is operated at rated load and unity power factor. The field current is increased by 20%. Show the

Q. Diagram, explain the construction of a single stage RC coupled amplifier? An RC Coupled amplifier consists of a transistor connected in the emitter configuration with neces

Calculate the monthly electric bill for TESTU.  Metering is as follows: B 00,000 kWHr C 00,000   kVARHr D 0,000        kW  peak demand Facilities Charge = $500

Bipolar junction transistor: Transistors are so named as they conduct via using both majority and minority carriers. The bipolar junction transistor that is abbreviated as BJT

Q. (a) What is the difference between a TEM mode and a TE mode? (b) Explain the terms "cutoff wavelength" and "dominant mode" as applied to waveguides. Find the cutoff wavelengt

Briefly Explain i. Importance of thermal diffusivity. ii. Describe the laws governing Heat Transfer. iii. Differentiate between Heat Transfer and Thermodynamics iv. Des

Q. A 6.6-kV line feeds two loads connected in parallel. Load A draws 100 kW at 0.6 lagging power factor, and load B absorbs 100 kVA at 0.8 lagging power factor. (a) For the comb

Explain Thermoplastic materials. Thermoplastic materials: The properties of such plastic materials do not change considerably when they are melted and after that cooled and s