Strictly local generation automaton, Theory of Computation

Assignment Help:

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the

automaton as an inexhaustible set of tiles labeled with the pairs of symbols, infinitely many instances of each type. The generator starts by selecting any tile labeled with 'x' on its left half. It then proceeds by selecting any tile for which the left half symbol matches the symbol on the right half of the previously selected tile and placing it with its left half overlapping the right half of that previous tile. In this way, the sequence of tiles grows until some tile with 'x' on its right half is placed. The generated string is the sequence of exposed symbols, not including the beginning and end symbols. Generation is non-deterministic-at each step the choice of tile is restricted only by the right symbol of the previous tile. A derivation of the generator is just the sequence of choices it makes in assembling a string, a sequence of pairs of symbols. The language generated by the generator is the set of all strings assembled by any of its derivations.

It should be clear that every string assembled by a derivation of the generator will be accepted by the automaton: the computation of the automaton will check the same sequence of pairs as the derivation of the generator uses and each of those pairs will be in the lookup table, hence, the computation will accept. Similarly it should be clear that every string accepted by a computation of the automaton will be assembled by the corresponding derivation of the generator.


Related Discussions:- Strictly local generation automaton

Deterministic finite automata, conversion from nfa to dfa 0 | 1 ____...

conversion from nfa to dfa 0 | 1 ___________________ p |{q,s}|{q} *q|{r} |{q,r} r |(s) |{p} *s|null |{p}

#dfa, Give DFA''s accepting the following languages over the alphabet {0,1}...

Give DFA''s accepting the following languages over the alphabet {0,1}: i. The set of all strings beginning with a 1 that, when interpreted as a binary integer, is a multiple of 5.

Computation and languages, When we study computability we are studying prob...

When we study computability we are studying problems in an abstract sense. For example, addition is the problem of, having been given two numbers, returning a third number that is

Decidability, examples of decidable problems

examples of decidable problems

Ogdens lemma, proof ogdens lemma .with example i am not able to undestand ...

proof ogdens lemma .with example i am not able to undestand the meaning of distinguished position .

Strictly local generation automaton, Another way of interpreting a strictly...

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the automaton as an inexh

Finite languages and strictly local languages, Theorem The class of ?nite l...

Theorem The class of ?nite languages is a proper subclass of SL. Note that the class of ?nite languages is closed under union and concatenation but SL is not closed under either. N

A composable-reset DFA (CR-DFA) is a five-tuple, Question 2 (10 pt): In thi...

Question 2 (10 pt): In this question we look at an extension to DFAs. A composable-reset DFA (CR-DFA) is a five-tuple, (Q,S,d,q0,F) where: – Q is the set of states, – S is the alph

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd