Strictly local generation automaton, Theory of Computation

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the

automaton as an inexhaustible set of tiles labeled with the pairs of symbols, infinitely many instances of each type. The generator starts by selecting any tile labeled with 'x' on its left half. It then proceeds by selecting any tile for which the left half symbol matches the symbol on the right half of the previously selected tile and placing it with its left half overlapping the right half of that previous tile. In this way, the sequence of tiles grows until some tile with 'x' on its right half is placed. The generated string is the sequence of exposed symbols, not including the beginning and end symbols. Generation is non-deterministic-at each step the choice of tile is restricted only by the right symbol of the previous tile. A derivation of the generator is just the sequence of choices it makes in assembling a string, a sequence of pairs of symbols. The language generated by the generator is the set of all strings assembled by any of its derivations.

It should be clear that every string assembled by a derivation of the generator will be accepted by the automaton: the computation of the automaton will check the same sequence of pairs as the derivation of the generator uses and each of those pairs will be in the lookup table, hence, the computation will accept. Similarly it should be clear that every string accepted by a computation of the automaton will be assembled by the corresponding derivation of the generator.

Posted Date: 3/21/2013 6:06:47 AM | Location : United States







Related Discussions:- Strictly local generation automaton, Assignment Help, Ask Question on Strictly local generation automaton, Get Answer, Expert's Help, Strictly local generation automaton Discussions

Write discussion on Strictly local generation automaton
Your posts are moderated
Related Questions
State and Prove the Arden's theorem for Regular Expression

implementation of operator precedence grammer

This close relationship between the SL2 languages and the recognizable languages lets us use some of what we know about SL 2 to discover properties of the recognizable languages.


Design a turing machine to compute x + y (x,y > 0) with x an y in unary, seperated by a # (descrition and genereal idea is needed ... no need for all TM moves)

The Last Stop Boutique is having a five-day sale. Each day, starting on Monday, the price will drop 10% of the previous day’s price. For example, if the original price of a product

The SL 2 languages are speci?ed with a set of 2-factors in Σ 2 (plus some factors in {?}Σ and some factors in Σ{?} distinguishing symbols that may occur at the beginning and en

automata of atm machine

prove following function is turing computable? f(m)={m-2,if m>2, {1,if