Strictly local generation automaton, Theory of Computation

Assignment Help:

Another way of interpreting a strictly local automaton is as a generator: a mechanism for building strings which is restricted to building all and only the

automaton as an inexhaustible set of tiles labeled with the pairs of symbols, infinitely many instances of each type. The generator starts by selecting any tile labeled with 'x' on its left half. It then proceeds by selecting any tile for which the left half symbol matches the symbol on the right half of the previously selected tile and placing it with its left half overlapping the right half of that previous tile. In this way, the sequence of tiles grows until some tile with 'x' on its right half is placed. The generated string is the sequence of exposed symbols, not including the beginning and end symbols. Generation is non-deterministic-at each step the choice of tile is restricted only by the right symbol of the previous tile. A derivation of the generator is just the sequence of choices it makes in assembling a string, a sequence of pairs of symbols. The language generated by the generator is the set of all strings assembled by any of its derivations.

It should be clear that every string assembled by a derivation of the generator will be accepted by the automaton: the computation of the automaton will check the same sequence of pairs as the derivation of the generator uses and each of those pairs will be in the lookup table, hence, the computation will accept. Similarly it should be clear that every string accepted by a computation of the automaton will be assembled by the corresponding derivation of the generator.


Related Discussions:- Strictly local generation automaton

Transition graphs, We represented SLk automata as Myhill graphs, directed g...

We represented SLk automata as Myhill graphs, directed graphs in which the nodes were labeled with (k-1)-factors of alphabet symbols (along with a node labeled ‘?' and one labeled

Complement - operations on languages, The fact that SL 2 is closed under i...

The fact that SL 2 is closed under intersection but not under union implies that it is not closed under complement since, by DeMorgan's Theorem L 1 ∩ L 2 = We know that

Finiteness problem for regular languages, The fact that the Recognition Pro...

The fact that the Recognition Problem is decidable gives us another algorithm for deciding Emptiness. The pumping lemma tells us that if every string x ∈ L(A) which has length grea

Local and recognizable languages, We developed the idea of FSA by generaliz...

We developed the idea of FSA by generalizing LTk transition graphs. Not surprisingly, then, every LTk transition graph is also the transition graph of a FSA (in fact a DFA)-the one

Construct a recognizer, Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG t...

Let L1 and L2 be CGF. We show that L1 ∩ L2 is CFG too. Let M1 be a decider for L1 and M2 be a decider for L2 . Consider a 2-tape TM M: "On input x: 1. copy x on the sec

Production, How useful is production function in production planning?

How useful is production function in production planning?

Myhill-nerode, Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff...

Theorem (Myhill-Nerode) A language L ⊆ Σ is recognizable iff ≡L partitions Σ* into ?nitely many Nerode equivalence classes. Proof: For the "only if" direction (that every recogn

Programming languages, Different types of applications and numerous program...

Different types of applications and numerous programming languages have been developed to make easy the task of writing programs. The assortment of programming languages shows, dif

Automata, As we are primarily concerned with questions of what is and what ...

As we are primarily concerned with questions of what is and what is not computable relative to some particular model of computation, we will usually base our explorations of langua

Abstract model of computation, When we say "solved algorithmically" we are ...

When we say "solved algorithmically" we are not asking about a speci?c programming language, in fact one of the theorems in computability is that essentially all reasonable program

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd