Already have an account? Get multiple benefits of using own account!
Login in your account..!
Remember me
Don't have an account? Create your account in less than a minutes,
Forgot password? how can I recover my password now!
Enter right registered email to receive password!
In this respect depth-first search (DFS) is the exact reverse process: whenever it sends a new node, it immediately continues to extend from it. It sends back to previously explored nodes only if it lay out of options. Although DFS goes to unbalanced and strange-looking exploration trees related to the orderly layers created by BFS, the combination of eager exploration with the perfect memory of a computer creates DFS very useful. It sends an algorithm template for DFS. We send special algorithms from it by specifying the subroutines traverseTreeEdge, root, init, backtrack, and traverseNonTreeEdge.
DFS creates a node when it First discovers it; started all nodes are unmarked. The main loop of DFS seems for unmarked nodes s and calls DFS(s; s) to lead a tree rooted at s. The genuine call DFS(u; v) extends all edges (v;w) out of v. The argument (u; v) display that v was reached via the edge (u; v) into v. For root nodes s, we need the .dummy. argument (s; s). We display DFS(¤; v) if the special nature of the incoming node is irrelevant for the discussion at hand. Assume now that we explore edge (v;w) within the fact DFS(¤; v). If w has been seen after, w is a node of the DFS-tree. So (v;w) is not a tree node and hence we create traverseNonTreeEdge(v;w) and prepare no recursive call of DFS. If w has not been given before, (v;w) converts a tree edge. We therefore call traverseTreeEdge(v;w), mark w and create the recursive call DFS(v;w). When we return from this call we include the next edge out of v. Once all edges out of v are included, we call backtrack on the incoming edge (u; v) to operate any summarizing or clean-up operations return and required.
Data array A has data series from 1,000,000 to 1 with step size 1, which is in perfect decreasing order. Data array B has data series from 1 to 1,000,000, which is in random order.
Complexity of an Algorithm An algorithm is a sequence of steps to solve a problem; there may be more than one algorithm to solve a problem. The choice of a particular algorith
1. What is an expert system and where are they needed? 2. What are the major issues involved in building an expert system?
Explain what are circular queues? Write down routines required for inserting and deleting elements from a circular queue implemented using arrays. Circular queue:
Q. Take an array A[20, 10] of your own. Suppose 4 words per memory cell and the base address of array A is 100. Find the address of A[11, 5] supposed row major storage.
algorithm for multiple queue with example program
When there is requirement to access records sequentially by some key value and also to access records directly by the similar key value, the collection of records may be organized
adjacency multi list
for i=1 to n if a[i}>7 for j=2 to n a[j]=a{j}+j for n=2 to n a[k]=a[j]+i else if a[1]>4 && a[1] for 2 to a[1] a[j]= a{j]+5 else for 2to n a[j]=a[j]+i ..
Write a detailed description of a function that takes in an integer as an argument, then prints out the squares of all positive integers whose squares are less than the input. (The
Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!
whatsapp: +91-977-207-8620
Phone: +91-977-207-8620
Email: [email protected]
All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd