Sparse matrix, Data Structure & Algorithms

Assignment Help:

Q. Define a sparse matrix. Explain different types of sparse matrices? Show how a triangular array is stored in memory. Evaluate the method to calculate address of any element ajk of a matrix stored in memory.                                                                                                                             

Ans.

Sparse Matrix

A m x n matrix A is said to be sparse if MOST of its elements are zero. A matrix that is not sparse is called dense matrix.

Types of Sparse matrix

1)            Diagonal Matrix

488_Diagonal matrix.png 

This is the square matrix where the non zero elements are only where row = col ie at

diagonal.

2)  Tridiagonal Matrix

897_tridiagonal matrix.png

In  this  square  matrix  all  elements  other  than  those  on  and  on  the  diagonals immediately above and below this one are zero.

Triangular Matrices

Tiangular Matrices is of 2 types:

a)  Lower triangular b)  Upper triangular

720_Diagonal matrix1.png

In an n*n lower triangular matrix A, row 1 has one non zero element, row 2 has 2,

....., and row n has n. whereas, in an n*n upper triangular matrix A, row 1 has n non zero elements, row 2 has n-1 ,.... , and row n has 1. In both the cases, the total number of non-zero elements is n(n+1)/2.

Both of these matrices can be represented using an one dimensional array la of size n(n+1)/2.

Consider lower triangular matrix L. the elements can be mapped by rows or by columns.

In a row-wise mapping, the element L[i,j], i>=j, is preceded by ∑k  for k=1 to i-1, elements that are in row 1 through i-1, and j-1 such elements from row i. the total number of elements that precede it in a row-wise mapping is

1620_Diagonal matrix2.png

 

This expression also gives the position l[i,j] in la.

Method  to  calculate  address  of  any  element  ajk   of  a  matrix     stored  in memory.

Let us consider 2 dimensional array a of size m*n further consider that the lower bound for the row index is lbr and for column index is lbc.

Like linear array, system keeps track of the first element only i.e. , the base address of the array.

Using this base address, the computer computes the address of the element in the ith row and jth column i.e. loc(a[i][j]), using the following formulae:

Column major order:-

Loc (a[i][j]) = base (a) + w [m (j - lbc) + ( i - lbr)] in general

Row major order:-

Loc (a[i][j]) = base (a) + w [n(i - lbr) + ( j - lbc)]            in general

where w is number of bytes per storage location for any one element of the array.


Related Discussions:- Sparse matrix

Explain dijkstra''s algorithm, Explain Dijkstra's algorithm Dijkstra's ...

Explain Dijkstra's algorithm Dijkstra's algorithm: This problem is concerned with finding the least cost path from an originating node in a weighted graph to a destination node

Avl tree rotations, AVL trees and the nodes it contains must meet strict ba...

AVL trees and the nodes it contains must meet strict balance requirements to maintain O(log n) search time. These balance restrictions are kept maintained via various rotation func

Data structure arrays, In this unit, we learned the data structure arrays f...

In this unit, we learned the data structure arrays from the application point of view and representation point of view. Two applications that are representation of a sparse matrix

Undirected graph and adjacency matrix, Q. Consider the specification writte...

Q. Consider the specification written below of a graph G V(G ) = {1,2,3,4} E(G ) = {(1,2), (1,3), (3,3), (3,4), (4,1)} (i)        Draw the undirected graph. (

Implement the physat algorithm, The first assignment in this course require...

The first assignment in this course required you to acquire data to enable you to implement the PHYSAT algorithm (Alvain et al. 2005, Alvain et al. 2008) in this second assignment

Structures for complete undirected graphs, Q. Draw  the structures of compl...

Q. Draw  the structures of complete  undirected  graphs  on  one,  two,  three,  four  and  five vertices also prove that the number of edges in an n vertex complete graph is n(n-1

Singly linked list , The two pointers per number of a doubly linked list pr...

The two pointers per number of a doubly linked list prepare programming quite easy. Singly linked lists as like the lean sisters of doubly linked lists. We need SItem to consider t

The space - time trade off, The best algorithm to solve a given problem is ...

The best algorithm to solve a given problem is one that requires less space in memory and takes less time to complete its execution. But in practice it is not always possible to

Progrrame, how to write a code for for a company , for calculate the salary...

how to write a code for for a company , for calculate the salary pay

Linked lists - implementation, The Linked list is a chain of structures whe...

The Linked list is a chain of structures wherein each structure contains data in addition to pointer, which stores the address (link) of the next logical structure in the list.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd