Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Linked lists, representation of links list in memory

representation of links list in memory

Breadth-first search, Breadth-first search starts at a given vertex h, whic...

Breadth-first search starts at a given vertex h, which is at level 0. In the first stage, we go to all the vertices that are at the distance of one edge away. When we go there, we

Implement an open hash table, In a chained hash table, each table entry is ...

In a chained hash table, each table entry is a pointer to a collection of elements. It can be any collection that supports insert, remove, and find, but is commonly a linked list.

Depth of complete binary tree, What will be depth do , of complete binary t...

What will be depth do , of complete binary tree of n nodes, where nodes are labelled from 1 to n with root as node and last leaf node as node n

Enumerate about the carrier set members, Enumerate about the carrier set me...

Enumerate about the carrier set members Ruby is written in C, so carrier set members (which is, individual symbols) are implemented as fixed-size arrays of characters (which is

Example of binary search, Let us assume a file of 5 records that means n = ...

Let us assume a file of 5 records that means n = 5 And k is a sorted array of keys of those 5 records. Let key = 55, low = 0, high = 4 Iteration 1: mid = (0+4)/2 = 2

Data communication, #question.explain different types of errors in data tra...

#question.explain different types of errors in data transmission.

Accept a file and form a binary tree - huffman encoding, Huffman Encoding i...

Huffman Encoding is one of the very simple algorithms to compress data. Even though it is very old and simple , it is still widely used (eg : in few stages of JPEG, MPEG etc). In t

Explain insertion procedure into a b-tree, Ans: I nsertion into the B...

Ans: I nsertion into the B-tree: 1.  First search is made for the place where the new record must be positioned. As soon as the keys are inserted, they are sorted into th

First class Abstract data type , 3. A function to convert a complex number ...

3. A function to convert a complex number in algebraic form to a complex number in phasor form

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd