Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Red black tree, red black tree construction for 4,5,6,7,8,9

red black tree construction for 4,5,6,7,8,9

Adjacency list representation, Adjacency list representation An Adjacen...

Adjacency list representation An Adjacency list representation of Graph G = {V, E} contains an array of adjacency lists mentioned by adj of V list. For each of the vertex u?V,

Explain depth-first traversal, Depth-first traversal A depth-first t...

Depth-first traversal A depth-first traversal of a tree visit a node and then recursively visits the subtrees of that node. Likewise, depth-first traversal of a graph visits

The various ways in which lc code can be accessed, Problem Your LC code...

Problem Your LC code is stored in a memory location as shown and the variable name is LC                  LC Memory address       Content(LC code)

Name the four data type groups, There are four data type groups:  I...

There are four data type groups:  Integer kepts whole numbers and signed numbers Floating-point Stores real numbers (fractional values). Perfect for storing bank deposit

Explain about the containers, Containers Introduction Simple abstr...

Containers Introduction Simple abstract data types are useful for manipulating simple sets of values, such as integers or real numbers however more complex abstract data t

Define the term counting - pseudocode, Define the term counting - Pseudocod...

Define the term counting - Pseudocode Counting in 1s is quite simple; use of statement count = count + 1 would enable counting to be done (for example in controlling a repeat

Push and pop operations, Q. Explain that how do we implement two stacks in ...

Q. Explain that how do we implement two stacks in one array A[1..n] in such a way that neither the stack overflows unless the total number of elements in both stacks together is n.

Bst created in pre- order, Q. Make a BST for the given sequence of numbe...

Q. Make a BST for the given sequence of numbers. 45,32,90,34,68,72,15,24,30,66,11,50,10 Traverse the BST formed in  Pre- order, Inorder and Postorder.

Programming information system, Describe an algorithm to play the Game of N...

Describe an algorithm to play the Game of Nim using all of the three tools (pseudocode, flowchart, hierarchy chart)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd