Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Selection sort, how to reduce the number of passes in selection sort

how to reduce the number of passes in selection sort

Algorithm to count number of nodes, Write an algorithm to count number of n...

Write an algorithm to count number of nodes in the circular linked list.                            Ans. Counting No of Nodes in Circular List Let list be a circular h

Limitation of binary search, Limitation of Binary Search: - (i)  The co...

Limitation of Binary Search: - (i)  The complexity of Binary search is O (log2 n). The complexity is similar irrespective of the position of the element, even if it is not pres

EM13845162, Do you have a library solution for this problem?

Do you have a library solution for this problem?

Program for linear search, Program for Linear Search. Program: Linear S...

Program for Linear Search. Program: Linear Search /*Program for Linear Search*/ /*Header Files*/ #include #include /*Global Variables*/ int search; int

Define strictly binary tree, Define Strictly Binary Tree Strictly Bina...

Define Strictly Binary Tree Strictly Binary Tree: - If each non leaf node in binary tree has non empty left and right sub-trees , then the tree is known as a strictly binary t

Green computing, In the present scenario of global warming, the computer ha...

In the present scenario of global warming, the computer hard ware and software are also contributing for the increase in the temperature in the environment and contributing for the

Algorithm to evaluate expression given in postfix notation , Q. Write down ...

Q. Write down an algorithm to evaluate an expression given to you in postfix notation. Show the execution of your algorithm for the following given expression. AB^CD-EF/GH+/+*

Design the system for seller, Your program should include three components ...

Your program should include three components selling, buying and managing for the use of sellers, buyers and the Manager, respectively. Provide a menu for a user to enter each comp

Define complete binary tree, Define Complete Binary Tree Complete Binar...

Define Complete Binary Tree Complete Binary Tree:- A whole binary tree of depth d is that strictly binary tree all of whose leaves are at level D.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd