Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Conversion of general trees into the binary trees, By taking an appropriate...

By taking an appropriate example explain how a general tree can be represented as a Binary Tree.                                                                    C onversio

Basic organization of computer system, what happen''s in my computer when ...

what happen''s in my computer when i input any passage

Write down the procedure to reverse a singly linked list. , Ans: A pr...

Ans: A procedure to reverse the singly linked list: reverse(struct node **st) { struct node *p, *q, *r; p = *st; q = NULL; while(p != NULL) { r =q;

Limitation of binary search, Limitation of Binary Search: - (i)  The co...

Limitation of Binary Search: - (i)  The complexity of Binary search is O (log2 n). The complexity is similar irrespective of the position of the element, even if it is not pres

Explain np-complete decision problem, a. Determine the result of inserting ...

a. Determine the result of inserting the keys 4,19, 17, 11, 3, 12, 8, 20, 22, 23, 13, 18, 14, 16, 1, 2, 24, 25, 26, 5 in order to an empty B-Tree of degree 3. Only draw the configu

Prime''z algorithem, Ask question #explain it beriflyMinimum 100 words acce...

Ask question #explain it beriflyMinimum 100 words accepted#

Heap sort, We will start by defining a new structure called Heap. Figure 3 ...

We will start by defining a new structure called Heap. Figure 3 illustrates a Binary tree. Figure: A Binary Tree A complete binary tree is said to assure the 'heap con

Effective way of storing two symmetric matrices, Explain an efficient and e...

Explain an efficient and effective way of storing two symmetric matrices of the same order in the memory. A n-square matrix array will be symmetric if a[j][k]=a[k][j] for all j

Algorithm for multiplication of two sparse matrices using li, algorithm for...

algorithm for multiplication of two sparse matrices using linked lists..

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd