Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Linked lists, what are grounded header linked lists?

what are grounded header linked lists?

Number of leaf nodes in a complete binary tree, The number of leaf nodes in...

The number of leaf nodes in a complete binary tree of depth d is    2 d

State algorithm to insert node p at the end of a linked list, Algo rithm t...

Algo rithm to Insert a Node p at the End of a Linked List is explained below Step1:   [check for space] If new1= NULL output "OVERFLOW" And exit Step2:   [Allocate fr

Explain class p problems, Explain class P problems Class  P  is  a  cla...

Explain class P problems Class  P  is  a  class  of  decision  problems  that  can  be  solved  in  polynomial time  by(deterministic) algorithms. This class of problems is kno

The threaded binary tree, By changing the NULL lines in a binary tree to th...

By changing the NULL lines in a binary tree to the special links called threads, it is possible to execute traversal, insertion and deletion without using either a stack or recursi

Implementation of a binary tree, Like general tree, binary trees are implem...

Like general tree, binary trees are implemented through linked lists. A typical node in a Binary tree has a structure as follows struct NODE { struct NODE *leftchild; i

Explain th term input and output- pseudocode, Explain th term input and ou...

Explain th term input and output-  Pseudocode Input and output indicated by the use of terms input number, print total, output total, print "result is" x and so on.

Complexity of algorithm, The simplest implementation of the Dijkstra's algo...

The simplest implementation of the Dijkstra's algorithm stores vertices of set Q into an ordinary linked list or array, and operation Extract-Min(Q) is just a linear search through

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd