Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

A full binary tree with 2n+1 nodes, A full binary tree with 2n+1 nodes have...

A full binary tree with 2n+1 nodes have n non-leaf nodes

Number of operations possible on ordered lists and arrays, Q. Enumerate num...

Q. Enumerate number of operations possible on ordered lists and arrays.  Write procedures to insert and delete an element in to array.

Explain the interfaces in ruby, Explain the Interfaces in Ruby Recall...

Explain the Interfaces in Ruby Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot be instantiated. Even though Ruby i

Data manipulation, perform the following length operation LENGTH("welcome t...

perform the following length operation LENGTH("welcome to ICA")=

The space - time trade off, The best algorithm to solve a given problem is ...

The best algorithm to solve a given problem is one that requires less space in memory and takes less time to complete its execution. But in practice it is not always possible to

Explain the sum of subset problem, a. Explain the sum of subset problem. Ap...

a. Explain the sum of subset problem. Apply backtracking to solve the following instance of sum of subset problem: w= (3, 4, 5, 6} and d = 13. Briefly define the method using a sta

Memory allocation strategies, Q. Explain the various memory allocation stra...

Q. Explain the various memory allocation strategies.                                                            Ans. M e m ory Allocation Strategies are given as follow

B – trees, B-trees are special m-ary balanced trees utilized in databases s...

B-trees are special m-ary balanced trees utilized in databases since their structure allows records to be added, deleted & retrieved with guaranteed worst case performance. A B-

Dijkstras algorithm, Djikstra's algorithm (named after it is discovered by ...

Djikstra's algorithm (named after it is discovered by Dutch computer scientist E.W. Dijkstra) resolves the problem of finding the shortest path through a point in a graph (the sour

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd