Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Design a framework of a genetic algorithm, You have to design a framework o...

You have to design a framework of a Genetic Algorithm (GA) with basic functionality. The basic functionality includes representation, recombination operators, tness function and se

Depth first search and breadth first search, Q. Illustrate the result of ru...

Q. Illustrate the result of running BFS and DFS on the directed graph given below using vertex 3 as source.  Show the status of the data structure used at each and every stage.

All pairs shortest paths, N = number of rows of the graph D[i[j] = C[i][...

N = number of rows of the graph D[i[j] = C[i][j] For k from 1 to n Do for i = 1 to n Do for j = 1 to n D[i[j]= minimum( d ij (k-1) ,d ik (k-1) +d kj (k-1)

Explain the theory of computational complexity, Explain the theory of compu...

Explain the theory of computational complexity A  problem's  intractability  remains  the  similar  for  all  principal  models  of   computations    and   all reasonable inpu

Entity relationship diagram, This question is based on the requirements of ...

This question is based on the requirements of a system to record band bookings at gigs. (A 'gig' is an event at which one or more bands are booked to play). You do not need to know

Merging 4 sorted files containing 50, Merging 4 sorted files having 50, 10,...

Merging 4 sorted files having 50, 10, 25 and 15 records will take time  O (100)

What is complexity, Complexity is the rate at which the needed storage or c...

Complexity is the rate at which the needed storage or consumed time rise as a function of the problem size. The absolute growth based on the machine utilized to execute the program

Applications of binary trees, In computer programming, Trees are utilized ...

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Gam

Convertion, how we can convert a graph into tree

how we can convert a graph into tree

Sorting algorithm for singly linked lists, Q. Which sorting algorithm can b...

Q. Which sorting algorithm can be easily adaptable for singly linked lists? Explain your answer as well.        Ans: The simple Insertion sort is sim

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd