Depth first search, Data Structure & Algorithms

Assignment Help:

DEPTH FIRST SEARCH (DFS)

The approach adopted into depth first search is to search deeper whenever possible. This algorithm frequently searches deeper through visiting unvisited vertices and whenever an unvisited vertex is not determined, it backtracks to earlier vertex to find out whether there are yet unvisited vertices.

As seen, the search described above is inherently recursive. We can determine a very simple recursive process to visit the vertices within a depth first search. The DFS is more or less alike to pre-order tree traversal. The procedure can be described as below:

Begun from any vertex (source) in the graph and mark it visited. Determine vertex that is adjacent to the source and not earlier visited via adjacency matrix & mark it visited. Repeat this procedure for all vertices that is not visited, if vertex is determined visited in this procedure, then return to the earlier step and begin the same process from there.

If returning back toward source is not possible, then DFS from the originally chosen source is complete and begin DFS using any unvisited vertex.

1686_DEPTH FIRST SEARCH.png

Figure: A Digraph

Let the digraph of Figure. Begun with S and mark it visited. Then visit the next vertex A, after that C & then D and finally E. Now there are no adjacent vertices of E to be visited next. Thus, now, backtrack to earlier vertex D as it also has no unvisited vertex. Now backtrack to C, then A, finally to S. Now S has an unvisited vertex B.

Begun DFS with B as a root node and then visit F. Now all of the nodes of the graph are visited.

Figure shows a DFS tree with a sequence of visits. The first number mention the time at which the vertex is visited first and the second number mention the time upon which the vertex is visited throughout back tracking.

386_DEPTH FIRST SEARCH1.png

Figure: DFS tree of digraph of above figure

The DFS forest is illustrated with shaded arrow in  above Figure.


Related Discussions:- Depth first search

Convertion, how we can convert a graph into tree

how we can convert a graph into tree

Explain in brief the asymptotic notations, Question 1 Write the different ...

Question 1 Write the different characteristics of an algorithm Question 2 Explain in brief the asymptotic notations Question 3 Write an algorithm of insertion sort and e

Mapping constain, one to many one to one many to many many to one

one to many one to one many to many many to one

Applications of binary trees, In computer programming, Trees are utilized ...

In computer programming, Trees are utilized enormously. These can be utilized for developing database search times (binary search trees, AVL trees, 2-3 trees, red-black trees), Gam

Explain backtracking, Explain Backtracking The  principal idea is to co...

Explain Backtracking The  principal idea is to construct solutions single component  at a time  and evaluate such  partially constructed candidates as follows. If a partiall

HUFFMAN CODING, Ask question 1. Indicate whether each of the following prop...

Ask question 1. Indicate whether each of the following properties is true for every Huffman code. a. The codewords of the two least frequent symbols have the same length. b. The

Drawback of sequential file, Following are some of the drawback of sequenti...

Following are some of the drawback of sequential file organisation: Updates are not simply accommodated. By definition, random access is impossible. All records should be

How do you rotate a binary tree, How do you rotate a Binary Tree?  Rot...

How do you rotate a Binary Tree?  Rotations in the tree: If after inserting a node in a Binary search tree, the balancing factor (height of left subtree - height of right

Psedocodes, write a pseudocode to input the top speed (in km''s/hours) of 5...

write a pseudocode to input the top speed (in km''s/hours) of 5000 cars output the fastest speed and the slowest speed output the average (mean) speed of all the 5000 cars answers

Algorithm to merge the lists together, Q. Let X = (X1, X2, X3,....Xn) and Y...

Q. Let X = (X1, X2, X3,....Xn) and Y= (Y1, Y2, Y3,....Xm) be the two linked lists respectively. Write down an algorithm to merge the lists together to get the linked list Z such th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd