Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Splaying procedure, For splaying, three trees are maintained, the central, ...

For splaying, three trees are maintained, the central, left & right sub trees. At first, the central subtree is the complete tree and left and right subtrees are empty. The target

Graph traversal schemes, Q. Explain various graph traversal schemes and wri...

Q. Explain various graph traversal schemes and write their advantages and disadvantages. A n s . Graph Traversal Scheme is explained below In many troubles we wish

Splaying algorithm, Insertion & deletion of target key requires splaying of...

Insertion & deletion of target key requires splaying of the tree. In case of insertion, the tree is splayed to find the target. If, target key is found out, then we have a duplicat

Flowchart, conversion of centrigral to frahenhit

conversion of centrigral to frahenhit

Circular queues and implement circular queues using array, Explain what are...

Explain what are circular queues? Write down routines required for inserting and deleting elements from a circular queue implemented using arrays.           Circular queue:

Algorithm for the selection sort, Q. Give the algorithm for the selection s...

Q. Give the algorithm for the selection sort. Describe the behaviours of selection sort when the input given is already sorted.

Create algorithm for similarities between documents, Here is a diagram show...

Here is a diagram showing similarities between documents; this is an actual set of physics lab assignments from a large university. Each node (square) in the graph is a doc

Examination, Write an algorithm for binary search. What are its limitations...

Write an algorithm for binary search. What are its limitations? .

State an algorithm which inputs 3 - digit code for 280 items, A small shop ...

A small shop sells 280 different items. Every item is identified by a 3 - digit code. All items which start with a zero (0) are cards, all items which start with a one (1) are swee

Explain insertion procedure into a b-tree, Ans: I nsertion into the B...

Ans: I nsertion into the B-tree: 1.  First search is made for the place where the new record must be positioned. As soon as the keys are inserted, they are sorted into th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd