Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Queue be represented by circular linked list, Q. Can a Queue be represented...

Q. Can a Queue be represented by circular linked list with only one pointer pointing to the tail of the queue? Substantiate your answer using an example. A n s . Yes a

Algorithms, 2. Write a note on i) devising ii) validating and...

2. Write a note on i) devising ii) validating and iii) testing of algorithms.

A Booth''s, Draw a flowchart of a Booth''s multiplication algorithm and exp...

Draw a flowchart of a Booth''s multiplication algorithm and explain it.

Types of a linked list, A linked list can be of the following types:- ...

A linked list can be of the following types:-  Linear linked list or one way list Doubly linked list or two way list. Circular linked list Header linked list

frequenty count of function, Ask question find frequency count of function...

Ask question find frequency count of function- {for(i=1;i {for(j=1;j {for(k=1;k } } }

Threads in main method, Create main method or a test class that creates 2 E...

Create main method or a test class that creates 2 Element objects that are neighbours of each other, the first element temperature set at 100, the 2nd at 0 and use an appropriate h

Explain division method, Explain Division Method Division Method: - In...

Explain Division Method Division Method: - In this method, key K to be mapped into single of the m states in the hash table is divided by m and the remainder of this division

An algorithm to insert a node in beginning of linked list, Q. Write down an...

Q. Write down an algorithm to insert a node in the beginning of the linked list.                         Ans: /* structure containing a link part and link part

Infix expression to postfix form using the stack function, Q. Convert the f...

Q. Convert the following given Infix expression to Postfix form using the stack function: x + y * z + ( p * q + r ) * s , Follow general precedence rule and suppose tha

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd