Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Memory mapping, lower triangular matrix and upper triangular matrix

lower triangular matrix and upper triangular matrix

Algorithm to count number of nodes, Write an algorithm to count number of n...

Write an algorithm to count number of nodes in the circular linked list.                            Ans. Counting No of Nodes in Circular List Let list be a circular h

Dynamic programming., Count Scorecards(30 points) In a tournament, N playe...

Count Scorecards(30 points) In a tournament, N players play against each other exactly once. Each game results in either of the player winning. There are no ties. You have given a

Splaying algorithm, Insertion & deletion of target key requires splaying of...

Insertion & deletion of target key requires splaying of the tree. In case of insertion, the tree is splayed to find the target. If, target key is found out, then we have a duplicat

#title.structured programming, what do you understand by structured program...

what do you understand by structured programming?explain with eg. top down and bottem up programming technique

Explain how two dimensional arrays are represented in memory, Explain how t...

Explain how two dimensional arrays are represented in memory. Representation of two-dimensional arrays in memory:- Let grades be a 2-D array as grades [3][4]. The array will

Sorting on several keys, Thus far, we have been considering sorting depend ...

Thus far, we have been considering sorting depend on single keys. However, in real life applications, we may desire to sort the data on several keys. The simplest instance is that

Find the optimal control, 1. Use the Weierstrass condition, find the (Stron...

1. Use the Weierstrass condition, find the (Strongly) minimizing curve and the value of J min for the cases where x(1) = 0, x(2) = 3. 2. The system = x 1 + 2u; where

Sparse matrices, SPARSE MATRICES Matrices along with good number of zer...

SPARSE MATRICES Matrices along with good number of zero entries are called sparse matrices. Refer the following matrices of Figure (a)

If, 1. Start 2. Get h 3. If h T=288.15+(h*-0.0065) 4. else if h T=2...

1. Start 2. Get h 3. If h T=288.15+(h*-0.0065) 4. else if h T=216.65 5. else if h T=216.65+(h*0.001) 6. else if h T=228.65+(h*0.0028) 7. else if h T=270.65 8.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd