Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Binary tree construction, Construct a B+ tree for the following keys, start...

Construct a B+ tree for the following keys, starting with an empty tree.  Each node in the tree can hold a maximum of 2 entries (i.e., order d = 1). Start with an empty root nod

Structure of an avl tree, Given is the structure of an AVL tree: struct ...

Given is the structure of an AVL tree: struct avl { struct node *left; int info; int bf; struct node *right; }; 2) A multiway tree of n order is an ord

Give example of assertion and abstract data type, Give example of assertion...

Give example of assertion and abstract data type For illustration, consider Natural ADT whose carrier set is the set of non-negative integers and whose operations are the usual

Sparse matrix, How sparse matrix stored in the memory of a computer?

How sparse matrix stored in the memory of a computer?

Operations on b-trees, Operations on B-Trees Given are various operatio...

Operations on B-Trees Given are various operations which can be performed on B-Trees: Search Create Insert B-Tree does effort to minimize disk access and t

Explain the prim''s minimum spanning tree algorithm, Question 1. Explai...

Question 1. Explain the different types of traversal on binary tree 2. Explain the Prim's minimum spanning tree algorithm 3. Differentiate fixed and variable storage allo

Algorithm for linear search, Here,  m represents the unordered array of ele...

Here,  m represents the unordered array of elements n  represents number of elements in the array and el  represents the value to be searched in the list Sep 1: [Initialize]

The complexity ladder, The complexity Ladder: T(n) = O(1). It is ca...

The complexity Ladder: T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this c

Define the internal path length, Define the Internal Path Length The In...

Define the Internal Path Length The Internal Path Length I of an extended binary tree is explained as the sum of the lengths of the paths taken over all internal nodes- from th

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd