Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Branch and Bound method, give some examples of least cost branch and bound ...

give some examples of least cost branch and bound method..

Algorithm, write an algorithm given each students name and grade points for...

write an algorithm given each students name and grade points for six courses.find his grade point average and group students into the gpa groups 3.5

Efficient way of storing a sparse matrix in memory, Explain an efficient wa...

Explain an efficient way of storing a sparse matrix in memory.   A matrix in which number of zero entries are much higher than the number of non zero entries is called sparse mat

Nothing, c++ To calculate the amount to be paid by a customer buying yummy ...

c++ To calculate the amount to be paid by a customer buying yummy cupcakes for his birth day party

Data structure arrays, In this unit, we learned the data structure arrays f...

In this unit, we learned the data structure arrays from the application point of view and representation point of view. Two applications that are representation of a sparse matrix

Algo for quicksort, Easy algorithm for beginner for quicksort with explanat...

Easy algorithm for beginner for quicksort with explanation

Explain the rgb model, RGB Model The RGB model is based on the assumpti...

RGB Model The RGB model is based on the assumption that any desired shade of colour can be obtained by mixing the correct amounts of red, green, and blue light. The exact hues

Java, Ask consider the file name cars.text each line in the file contains i...

Ask consider the file name cars.text each line in the file contains information about a car ( year,company,manufacture,model name,type) 1-read the file 2-add each car which is repr

Explain the interfaces in ruby, Explain the Interfaces in Ruby Recall...

Explain the Interfaces in Ruby Recall that in object-oriented programming, an interface is a collection of abstract operations that cannot be instantiated. Even though Ruby i

Depth first traversal, A depth-first traversal of a tree visits a nodefirst...

A depth-first traversal of a tree visits a nodefirst and then recursively visits the subtrees of that node. Similarly, depth-first traversal of a graph visits a vertex and then rec

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd