Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Advanced data structures, In this unit, the following four advanced data st...

In this unit, the following four advanced data structures have been practically emphasized. These may be considered as alternative to a height balanced tree, i.e., AVL tree.

Implementation of a binary tree, Like general tree, binary trees are implem...

Like general tree, binary trees are implemented through linked lists. A typical node in a Binary tree has a structure as follows struct NODE { struct NODE *leftchild; i

Determine the warnock algorithm, Warnock's Algorithm A divide and conqu...

Warnock's Algorithm A divide and conquer algorithm Warnock (PolyList PL, ViewPort VP) If (PL simple in VP) then Draw PL in VP, else Split VP vertically and horiz

Estimate cost of an optimal diapath, Normally a potential y satisfies y r ...

Normally a potential y satisfies y r = 0 and 0 ³ y w - c vw -y v . Given an integer K³0, define a K-potential to be an array y that satisfies yr = 0 and K ³ y w - c vw -y v

Demonstration of polynomial using linked list, Demonstration of Polynomial ...

Demonstration of Polynomial using Linked List # include # include Struct link { Char sign; intcoef; int expo; struct link *next; }; Typedefstruct link

Naïve recursive algorithm for binomial coefficients, How many recursive cal...

How many recursive calls are called by the naïve recursive algorithm for binomial coefficients, C(10, 5) and C(21, 12) C(n,k){c(n-1,k)+c(n-1,k-1) if 1 1 if k = n or k = 0

What is class invariants assertion, What is Class invariants assertion ...

What is Class invariants assertion A class invariant is an assertion which should be true of any class instance before and after calls of its exported operations. Generally

Efficient way of storing two symmetric matrices, Explain an efficient way o...

Explain an efficient way of storing two symmetric matrices of the same order in memory. A n-square matrix array is said to be symmetric if a[j][k]=a[k][j] for all j and k. For

Arrays, Data array A has data series from 1,000,000 to 1 with step size 1, ...

Data array A has data series from 1,000,000 to 1 with step size 1, which is in perfect decreasing order. Data array B has data series from 1 to 1,000,000, which is in random order.

Define midsquare method, Midsquare Method :- this operates in 2 steps. In t...

Midsquare Method :- this operates in 2 steps. In the first step the square of the key value K is taken. In the 2nd step, the hash value is obtained by deleting digits from ends of

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd