Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

A full binary tree with n leaves, A full binary tree with n leaves have:- ...

A full binary tree with n leaves have:- 2n -1 nodes.

Algorithm for a function that takes in integer as argument, Write a detaile...

Write a detailed description of a function that takes in an integer as an argument, then prints out the squares of all positive integers whose squares are less than the input. (The

Arrays, Data array A has data series from 1,000,000 to 1 with step size 1, ...

Data array A has data series from 1,000,000 to 1 with step size 1, which is in perfect decreasing order. Data array B has data series from 1 to 1,000,000, which is in random order.

Size of stack, The size of stack was declared as ten. Thus, stack cannot ho...

The size of stack was declared as ten. Thus, stack cannot hold more than ten elements. The major operations which can be performed onto a stack are push and pop. However, in a prog

Implementation of stack, In this unit, we have learned how the stacks are i...

In this unit, we have learned how the stacks are implemented using arrays and using liked list. Also, the advantages and disadvantages of using these two schemes were discussed. Fo

Assignment, How do I submit a three page assignment

How do I submit a three page assignment

Nested for loop, nested for loop for (i = 0; i for (j = 0; j seq...

nested for loop for (i = 0; i for (j = 0; j sequence of statements } } Here, we observe that, the outer loop executes n times. Every time the outer loop execute

Notes, Ask question #Minimum 10000 words accepted#

Ask question #Minimum 10000 words accepted#

Convertion, how we can convert a graph into tree

how we can convert a graph into tree

Sorting, explain quick sort algorithm

explain quick sort algorithm

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd