Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Representation of records, Records are mapped onto a computer store by simp...

Records are mapped onto a computer store by simply juxtaposing their elements. The address of a component (field) r relative to the origin address of the record r is named the fiel

Enumerate about the carrier set members, Enumerate about the carrier set me...

Enumerate about the carrier set members Ruby is written in C, so carrier set members (which is, individual symbols) are implemented as fixed-size arrays of characters (which is

How do you find the complexity of an algorithm, How do you find the complex...

How do you find the complexity of an algorithm?  Complexity of an algorithm is the measure of analysis of algorithm. Analyzing an algorithm means predicting the resources that

Different ways for representing s graph, W h at are the different ways by...

W h at are the different ways by which we can represent graph?  Represent the graph drawn below using those ways.     T he d iff e r e nt w a y s by

Amortized algorithm analysis, In the amortized analysis, the time needed to...

In the amortized analysis, the time needed to perform a set of operations is the average of all operations performed. Amortized analysis considers as a long sequence of operations

Applications of shortest path algorithms, The minimum cost spanning tree ha...

The minimum cost spanning tree has broad applications in distinct fields. It represents several complicated real world problems such as: 1. Minimum distance for travelling all o

Implementation of stack, In this unit, we have learned how the stacks are i...

In this unit, we have learned how the stacks are implemented using arrays and using liked list. Also, the advantages and disadvantages of using these two schemes were discussed. Fo

Explain about the containers, Containers Introduction Simple abstr...

Containers Introduction Simple abstract data types are useful for manipulating simple sets of values, such as integers or real numbers however more complex abstract data t

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd