Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

Data structures, Aa) Come up with an ERD from the following scenario, clear...

Aa) Come up with an ERD from the following scenario, clearly stating all entities, attributes, relationships before final sketch of the ERD: [50 m

What are the dynamic arrays, What are the Dynamic arrays Dynamic arrays...

What are the Dynamic arrays Dynamic arrays are convenient for programmers since they can never be too small-whenever more space is needed in a dynamic array, it can simply be e

Define minimum spanning tree, Define Minimum Spanning Tree A minimum sp...

Define Minimum Spanning Tree A minimum spanning tree of a weighted linked graph is its spanning tree of the smallest weight, where the weight of a tree is explained as the sum

Algorithm to add an element at the end of linked list, Write an algorithm t...

Write an algorithm to add an element at the end of circular linked list.   Algorithm to Add the Element at the End of Circular Linked List. IINSENDCLL( INFO, LINK, START, A

Array implementation of a circular queue, A circular queue can be implement...

A circular queue can be implemented through arrays or linked lists. Program 6 gives the array implementation of any circular queue. Program 6: Array implementation of any Circu

Operations on b-trees, Operations on B-Trees Given are various operatio...

Operations on B-Trees Given are various operations which can be performed on B-Trees: Search Create Insert B-Tree does effort to minimize disk access and t

File organization, Define File organization''s and it''s types

Define File organization''s and it''s types

A binary tree in which levels except possibly the last, A binary tree in wh...

A binary tree in which if all its levels except possibly the last, have the maximum number of nodes and all the nodes at the last level appear as far left as possible, is called as

Representation of arrays, REPRESENTATION OF ARRAYS This is not uncommon...

REPRESENTATION OF ARRAYS This is not uncommon to determine a large number of programs which procedure the elements of an array in sequence. However, does it mean that the eleme

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd