Kruskals algorithm, Data Structure & Algorithms

Assignment Help:

Krushkal's algorithm uses the concept of forest of trees. At first the forest contains n single node trees (and no edges). At each of the step, we add on one (the cheapest one) edge so that it links two trees together. If it makes a cycle, simply it would mean that it links two nodes that were connected already. So, we reject it.

The steps in Kruskal's Algorithm are as:

1.   The forest is constructed through the graph G - along each node as a separate tree in the forest.

2.   The edges are placed within a priority queue.

3.   Do till we have added n-1 edges to the graph,

  I.   Extract the lowest cost edge from the queue.

 II.   If it makes a cycle, then a link already exists among the concerned nodes. So reject it.

 III.  Otherwise add it to the forest. Adding it to the forest will join two trees together.

The forest of trees is a division of the original set of nodes. At first all the trees have exactly one node in them. As the algorithm progresses, we make a union of two of the trees (sub-sets), until the partition has only one sub-set containing all the nodes eventually.

Let us see the sequence of operations to determine the Minimum Cost Spanning Tree(MST) in a graph via Kruskal's algorithm. Suppose the graph of graph shown in figure  and below figure  illustrates the construction of MST of graph of Figure

1339_Kruskals Algorithm.png

Figure: A Graph

Figure: Construction of Minimum Cost Spanning Tree for the Graph by application of Kruskal's algorithm

The following are several steps in the construction of MST for the graph of Figure via Kruskal's algorithm.

Step 1 :  The lowest cost edge is chosen from the graph that is not in MST (initially MST is empty). The cheapest edge is 3 that is added to the MST (illustrated in bold edges)

Step 2: The next cheap edge which is not in MST is added (edge with cost 4).

Step 3 : The next lowest cost edge that is not in MST is added (edge with cost 6).

 Step 4 : The next lowest cost edge that is not in MST is added (edge with cost 7).

Step 5 : The next lowest cost edge that is not in MST is 8 but form a cycle. Hence, it is discarded. The next lowest cost edge 9 is added. Now the MST has all the vertices of the graph. This results in the MST of the original graph.


Related Discussions:- Kruskals algorithm

What is efficiency of algorithm, What is Efficiency of algorithm? Effic...

What is Efficiency of algorithm? Efficiency of an algorithm can be precisely explained and investigated with mathematical rigor.  There are two types of algorithm efficiency

Quick sort method, Q. Explain quick sort? Sort the given array using quick ...

Q. Explain quick sort? Sort the given array using quick sort method. 24 56 47 35 10 90 82 31

C++ function, Write c++ function to traverse the threaded binary tree in in...

Write c++ function to traverse the threaded binary tree in inorder traversal

Construct a minimum spanning tree, Construct G for α, n, and W given as com...

Construct G for α, n, and W given as command line parameters. Throw away edges that have an asymmetric relation between nodes. That is, if A is connected to B, but B is not connect

State about the pseudocode, State the Introduction to pseudocode No spe...

State the Introduction to pseudocode No specific programming language is referred to; development of algorithms by using pseudocode uses generic descriptions of branching, loop

Which are the two standard ways of traversing a graph, Which are the two st...

Which are the two standard ways of traversing a graph? i. The depth-first traversal   ii. The breadth-first traversal

Graph with n vertices will absolutely have a parallel edge, A graph with n ...

A graph with n vertices will absolutely have a parallel edge or self loop if the total number of edges is greater than n-1

Search engines - applications of linear and binary search, Search engines e...

Search engines employ software robots to survey the Web & build their databases. Web documents retrieved & indexed through keywords. While you enter a query at search engine websit

Ruby implementation of the symbol abstract data type, Ruby implementation o...

Ruby implementation of the Symbol ADT Ruby implementation of the Symbol ADT, as mentioned, hinges on making Symbol class instances immutable that corresponds to the relative la

Binary search tree, A binary search tree (BST), which may sometimes also be...

A binary search tree (BST), which may sometimes also be named a sorted or ordered binary tree, is an edge based binary tree data structure which has the following functionalities:

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd