The complexity ladder, Data Structure & Algorithms

Assignment Help:

The complexity Ladder:

  • T(n) = O(1). It is called constant growth. T(n) does not raise at all as a function of n, it is a constant. For illustration, array access has this characteristic. A[i] takes the identical time independent of the size of the array A.
  • T(n) = O(log2 (n)). It is called logarithmic growth. T(n) raise proportional to the base 2 logarithm of n. In fact, the base of logarithm does not matter. For instance, binary search has this characteristic.
  • T(n) = O(n). It is called linear growth. T(n) linearly grows with n. For instance, looping over all the elements into a one-dimensional array of n elements would be of the order of O(n).
  • T(n) = O(n log (n). It is called nlogn growth. T(n) raise proportional to n times the base 2 logarithm of n. Time complexity of Merge Sort contain this characteristic. Actually no sorting algorithm that employs comparison among elements can be faster than n log n.
  • T(n) = O(nk). It is called polynomial growth. T(n) raise proportional to the k-th power of n. We rarely assume algorithms which run in time O(nk) where k is bigger than 2 , since such algorithms are very slow and not practical. For instance, selection sort is an O(n2) algorithm.
  • T(n) = O(2n) It is called exponential growth. T(n) raise exponentially.

In computer science, Exponential growth is the most-danger growth pattern. Algorithms which grow this way are fundamentally useless for anything except for very small input size.

Table 1 compares several algorithms in terms of their complexities.

Table 2 compares the typical running time of algorithms of distinct orders.

The growth patterns above have been tabulated in order of enhancing size. That is,   

  O(1) <  O(log(n)) < O(n log(n)) < O(n2)  < O(n3), ... , O(2n).

Notation

Name

Example

O(1)

Constant

Constant growth. Does

 

 

not grow as a function

of n. For example, accessing array for one element A[i]

O(log n)

Logarithmic

Binary search

O(n)

Linear

Looping over n

elements, of an array of size n (normally).

O(n log n)

Sometimes called

"linearithmic"

Merge sort

O(n2)

Quadratic

Worst time case for

insertion sort, matrix multiplication

O(nc)

Polynomial,

sometimes

 

O(cn)

Exponential

 

O(n!)

Factorial

 

 

              Table 1: Comparison of several algorithms & their complexities

 

 

 

Array size

 

Logarithmic:

log2N

 

Linear: N

 

Quadratic: N2

 

Exponential:

2N

 

8

128

256

1000

100,000

 

3

7

8

10

17

 

8

128

256

1000

100,000

 

64

16,384

65,536

1 million

10 billion

 

256

3.4*1038

1.15*1077

1.07*10301

........

 


Related Discussions:- The complexity ladder

Write an algorithm to measure daily temperatures, A geography class decide ...

A geography class decide to measure daily temperatures and hours of sunshine each day over a 12 month period (365 days) Write an algorithm, using a flowchart that inputs tempera

Two-dimensional array, Two-dimensional array is shown in memory in followin...

Two-dimensional array is shown in memory in following two ways:  1.  Row major representation: To achieve this linear representation, the first row of the array is stored in th

Decision tree, . Create a decision table that describes the movement of inv...

. Create a decision table that describes the movement of inventory

Sort wars - sorting algorithm, If quicksort is so quick, why bother with an...

If quicksort is so quick, why bother with anything else? If bubble sort is so bad, why even mention it? For that matter, why are there so many sorting algorithms? Your mission (sho

Deletion from a red-black tree, Deletion in a RBT uses two main processes, ...

Deletion in a RBT uses two main processes, namely, Procedure 1: This is utilized to delete an element in a given Red-Black Tree. It involves the method of deletion utilized in

In-order traversal, Write steps for algorithm for In-order Traversal Th...

Write steps for algorithm for In-order Traversal This process when implemented iteratively also needs a stack and a Boolean to prevent the execution from traversing any portion

What is gouraud shading, Gouraud Shading The faceted appearance of a La...

Gouraud Shading The faceted appearance of a Lambert shaded model is due to each polygon having only a single colour. To avoid this effect, it is necessary to vary the colour ac

Implementing abstract data types, Implementing abstract data types A co...

Implementing abstract data types A course in data structures and algorithms is hence a course in implementing abstract data types. It may seem that we are paying a lot of atten

Insertion of an element in a linear array, To delete an element in the list...

To delete an element in the list at the end, we can delete it without any difficult. But, assume if we desire to delete the element at the straining or middle of the list, then, we

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd