Write down the system of differential equations, Mathematics

Assignment Help:

Write down the system of differential equations for mass system and the spring above.

Solution

To assist us out let's first take a rapid look at a situation wherein both of the masses have been moved.  It is demonstrated below.

2214_Write down the system of differential equations.png

Before proceeding let's see that it is only a representation of a classic case, but most definitely not each possible case.

Under this case we're assuming as both x1  and x2  are positive and that x2 - x1 < 0 , or conversely, both masses have been moved to the right of their regards equilibrium points and that m1 has been moved farther than m2 .Therefore, under these assumption on x1  and x2  we know that the spring on the left along with spring constant k1 has been stretched past it's natural length whereas the middle spring that have constant k2 and the right spring that have constant k3 are both in compression.

Also, we've demonstrated the external forces, F1 (t) and F2 (t), as present and acting into the positive direction. They do not, in practice, require to be present in every situation where in case we will suppose that F1 (t) = 0 and/or F2 (t) = 0. Similarly, if the forces are actually acting in the negative direction we will after that suppose that F1 (t) < 0 and/or F2 (t) < 0.

Before starting we need to discuss a little bit about how the middle spring will act as the masses move. Now there are all the possibilities which we can have and the influence each will have on x2- x1.  Note that under each case the amount of stretch/compression in the spring is specified by x2 - x1 even though we won't be using the absolute value bars while we set up the differential equations.

1.      If both mass move similar amount in similar direction then the middle spring will not contain changed length and we'll contain x2 - x1 = 0.

2. If both masses move in the positive direction afterwards the sign of x2 - x1 will tell us which has moved more. If m1 moves more than m2 then the spring will be in compression and x2 - x1 > 0 . Similarly, if m2 moves more than m1 then the spring will have been stretched and x2 - x1 < 0 .

 3. If both masses move into the negative direction we'll contain pretty much the opposite behavior like #2.  If m1 shifts more than m2 then the spring will have been stretched and x2 - x1 > 0 .  Likewise, if m2 shifts more than m1 then the spring will be in compression and x2 - x1 < 0.

 4. If m1 moves in the positive direction and m2 moves in the negative direction then the spring will be in compression and x2 - x1 < 0 .

 5. Finally, if m1 moves in the negative direction and m2 moves in the positive direction then the spring will have been stretched and x2 - x1 > 0 .

 Here, we'll use the figure above to assist us develop the differential equations and then ensure that they will also hold for the other cases suitably.

Let's start off through getting the differential equation for the forces acting upon m1. Now there is a rapid sketch of the forces acting on m1 for the figure as given above.

1233_Write down the system of differential equations1.png

Under this case x1 > 0 and therefore the first spring has been stretched and therefore will exert a negative that is to the left force upon the mass. The force from the primary spring is then -k1 x1 and the "-" is required since the force is negative but both k1 and x1 are positive.

Subsequently, as we're assuming that m1 has moved more than m2 and both have moved in the positive direction we also identify that x2 - x1 < 0.  Since m1 has moved more than m2  we identify that the second spring will be in compression and thus the force must be acting in the negative direction on m1 and hence the force will be k2 (x2 - x1).  Note that since k2 is positive and x2 - x1 is negative such force will have the accurate sign that is negative.

Then the differential equation for m1 is,

m1 x1′′= - k1 x1 + k2 (x2 - x1 ) +F1 (t)

Remember that it will also hold for all the other cases. If m1 has been moved in the negative direction the force form the spring on the right that acts on the mass will be positive and -k1 x1 will be a positive quantity for this case. After that, if the middle is has been stretched that is x2 - x1 > 0 then the force from this spring on m1 will be in the positive direction and k2(x2 - x1) will be a positive quantity for this case. Thus, this differential equation contains for all cases not just the one we exemplified at the start of this problem.

Let's here we write down the differential equation for all the forces which are acting on m2 .  Now there is a sketch of the forces acting upon this mass for the situation sketched out in the figure as given above.

1446_Write down the system of differential equations2.png

For this case  x2  is positive and therefore the spring on the right is in compression and will exert a negative force upon m2 and therefore this force must be -k3 x2 , here the "-" is needed since both k3  and  x2  are positive. Also, the middle spring is until now under compression but the force which it exerts on this mass is this time a positive force, not like in the case of m1 , and therefore is given through -k2 (x2 - x1). The "-" on that force is needed since x2 - x1 is negative and the force must be positive.

Then the differential equation for m2 is,

m2 x2′′ = - k3 x2 - k2(x2 - x1) + F2 (t)

We'll leave this to you to verify that that differential equation does actually hold for all the other cases.

Placing all of this together and doing a little rewriting will after that give the follow system of differential equations for this situation.

m1 x1′′ = - (k1 + k2) x1 + k2 x2 + F1(t)

m2 x2′′ = k2 x1 - (k2 + k3) x2 + F2(t)

it is a system to two linear second order differential equations which may or may not be non-homogeneous depending if there are any external forces, F1 (t) and F2 (t) , acting upon the masses.


Related Discussions:- Write down the system of differential equations

Union operations using union by weight, Show the result of the following se...

Show the result of the following sequence of UNION operations using union-by-weight with the following assumptions Unions are performed on the representatives on the sets th

Fourier series - partial differential equations, Fourier series - Partial D...

Fourier series - Partial Differential Equations One more application of series arises in the study of Partial Differential Equations.  One of the more generally employed method

Interval of validity, The interval of validity for an IVP along with initia...

The interval of validity for an IVP along with initial conditions: y(t 0 ) = y 0 or/and y (k) (t 0 ) = y k There is the largest possible interval on that the solution is va

Index of summation - sequences and series, Index of summation - Sequences a...

Index of summation - Sequences and Series Here now, in the i is termed as the index of summation or just index for short and note that the letter we employ to represent

Complex number 1pi in polar form, Whlie solving complex number 1pi in polar...

Whlie solving complex number 1pi in polar form.In book they have taken theta =-pi/4 why not 7pi/4 because the point lie in fourth quadrant and the theta is given by 2pi-angle(alpha

Light take 5.3 × 10-6 seconds calculate standard notation, It takes light 5...

It takes light 5.3 × 10 -6 seconds to travel one mile. What is this time in standard notation? In order to convert this number to standard notation, multiply 5.3 through the f

Solve the limit problem, Solve the Limit problem as stated  Limit x tends...

Solve the Limit problem as stated  Limit x tends to 0 [tanx/x]^1/x^2 is ? lim m tends to infinity [cos (x/m)] ^m is? I need the procedure of solving these sums..

Converting., I need help converting my project fractions into 1

I need help converting my project fractions into 1

Determine y' for xy = 1 by implicit differentiation, Determine y′ for xy = ...

Determine y′ for xy = 1 . Solution : There are in fact two solution methods for this problem. Solution 1: It is the simple way of doing the problem.  Just solve for y to

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd