Three dimensional geometry, Mathematics

Assignment Help:

Three Dimensional geometry

Intorduction

In earlier classes we studied about the coordinates in two planes that is the XY plane. Here we are going to study in detail about the coordinates in three planes that is X, Y and the Z planes. First let us study about the direction cosines and direction ratios of lines.

1.     If the line makes angles α β γ with the positive directions of x- axis, y-axis and z-axis respectively then cos α , cos β , cosγ arecalled its direction cosines and are usually denoted as l,m,n.

2.     Direction cosines of x axis are 1,0,0

3.     Direction cosines of y-axis are 0,1,0

4.     Direction cosines of z-axis are 0,0,1.

Direction Ratios of a line.

1.     3 numbers a,b,c are called direction ratios of a line if l/a = m/b = n/c, where l,m,n are the direction cosines of the line.

2.     If l,m,n are the direction ratios of a line then l² + m² + n² = 1.

3.     If a line makes  α β γ  with the positive direction of x,y,z axes respectively then cos²α + cos²β + cos² γ = 1 and

4.     Sin²α+sin²β + sin²  γ  = 2.

 

6.     Direction ratios of the line joining A(x1,y1,z1) and B(x2,y2,z2) are x1-x2,

y1-y2, z1-z2 or vice versa.

Direction cosines of the line joining A(x1,y1,z1) and B(x2,y2,z2) are

x1-x2/AB, y1-y2/AB , z1-z2/AB


Related Discussions:- Three dimensional geometry

A fire in a building b is reported on telephone, A fire in a building B is ...

A fire in a building B is reported on telephone to two fire stations P and Q, 10km apart from each other on a straight road.  P observes that the fire is at an angle of 60 o to th

What is the integratin of 1/sin2x?, ∫1/sin2x dx = ∫cosec2x dx = 1/2 log[cos...

∫1/sin2x dx = ∫cosec2x dx = 1/2 log[cosec2x - cot2x] + c = 1/2 log[tan x] + c Detailed derivation of ∫cosec x dx = ∫cosec x(cosec x - cot x)/(cosec x - cot x) dx = ∫(cosec 2 x

Play and learn maths, PLAY AND LEARN :  Children can learn many basic math...

PLAY AND LEARN :  Children can learn many basic mathematical concepts through games. They enjoy Mathematical concepts can be playing within familiar contexts. Their games also gen

How many square centimeters are in one square meter, How many square centim...

How many square centimeters are in one square meter? There are 100 cm in a meter. A square meter is 100 cm through 100 cm. The area of this is 10,000 sq cm (100 × 100 = 10,000)

Simplification, if a+1/b=b+1/c=c+1/a then the value of abc is

if a+1/b=b+1/c=c+1/a then the value of abc is

Definition of random variables, Q. Definition of Random Variables? Ans...

Q. Definition of Random Variables? Ans. Up to this point, we have been looking at probabilities of different events. Basically, random variables assign numbers to element

Geometry., solve for y given that 3sin^2 y+cos y-1=0 for 0y360

solve for y given that 3sin^2 y+cos y-1=0 for 0y360

Center of mass - applications of integrals, Center of Mass - Applications o...

Center of Mass - Applications of integrals In this part we are going to find out the center of mass or centroid of a thin plate along with uniform density ρ. The center of mass

What is the value of tan in terms of sin, What is the value of tan? in term...

What is the value of tan? in terms of sin?. Ans:    Tan ? = S i n ?/ C os ? Tan ? = S i n ? / √1 - S i n   2?

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd