The appropriate resource constraint, Mathematics

Assignment Help:

Consider a person's decision problem in trying to decide how many children to have. Although she cares about children and would like to have as many as possible, she knows that children are "costly" in the sense that there are costs to their upbringing as well as the time that she will have to take off from work in order to have children. Her utility function over her own consumption (x), her own leisure (l) and the number of children (n) is given by the following utility function:

U(x,l,n) = x1/6l1/6n1/6

For tractability (and to be able to use calculus), we will assume that the number of children, n is a continuous variable (i.e. it can take any nonnegative value, including decimal values like 2.15 etc.). This individual is endowed with a total of T units of time in her life, which she can divide between working, leisure and having children. For having each child, she will have to take time t off from work, during which she will not earn anything. Besides this, there is a per child cost of n for upbringing expenses.

Her wage rate is w; she uses her total income to purchase good x for her own consumption, as well as to provide for the upbringing expenses of her children. Assume that good x is priced at p per unit.

(a) Write the consumer's optimization problem with the appropriate resource constraint, and derive her Marshalian demand for children n.

[Hint: Instead of redoing the whole calculations, can you make use of your results from Problem 1?]

(b) Suppose the government introduces child benefits i.e. for every child she has, the government provides her an amount s. How will this affect her decision on how many children to have i.e. is dn/sn greater or less than 0?


Related Discussions:- The appropriate resource constraint

Oscar sold 2 glasses of milk for each 5 sodas he sold, Oscar sold 2 glasses...

Oscar sold 2 glasses of milk for each 5 sodas he sold. If he sold 10 glasses of milk, how many sodas did he sell? Set up a proportion along with milk/soda = 2/5 = 10x. Cross mu

surfaces z + |y| = 1, Describe and sketch the surfaces z + |y| = 1 and (x ...

Describe and sketch the surfaces z + |y| = 1 and (x   2) 2 y + z 2 = 0.

Geometry, the segments shown could form a triangle

the segments shown could form a triangle

E is irrational, If e were rational, then e = n/m for some positive integer...

If e were rational, then e = n/m for some positive integers m, n. So then 1/e = m/n. But the series expansion for 1/e is 1/e = 1 - 1/1! + 1/2! - 1/3! + ... Call the first n v

Normal distribution, Normal Distribution Figure 1 The norm...

Normal Distribution Figure 1 The normal distribution reflects the various values taken by many real life variables like the heights and weights of people or the ma

Management, An investment manager at TD Ameritrade is making a decision abo...

An investment manager at TD Ameritrade is making a decision about a $10,000,000 investment. There are four portfolio options available and she is looking at annual return of these

Find the second derivative of the equation, Find the second derivative of t...

Find the second derivative of the below given equation Y= e x cosx

Basic Mathematics, Distinguish between Mealy and Moore Machine? Construct a...

Distinguish between Mealy and Moore Machine? Construct a Mealy machine that can output EVEN or ODD According to the total no. of 1''''s encountered is even or odd.on..

Prove - digraph of a partial order has no cycle more than 1, Prove that the...

Prove that the Digraph of a partial order has no cycle of length greater than 1. Assume that there exists a cycle of length n ≥ 2 in the digraph of a partial order ≤ on a set A

Mathematic Modeling, Ask question I have 2 problems I need them after 7 hou...

Ask question I have 2 problems I need them after 7 hours

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd