Laplace transforms, Mathematics

Assignment Help:

Here is not too much to this section. We're here going to work an illustration to exemplify how Laplace transforms can be used to solve systems of differential equations.

Illustration:  Solve the following system.

x1'= 3x1 - 3x2 + 2;                    x1(0) = 1

x2'= -6x1 - t;                             x2(0) = -1

Solution:

First see that the system is not specified in matrix form. This is since the system won't be solved in matrix form.  Also notice that the system is nonhomogeneous.

 

We start just as we did while we used Laplace transforms to resolve single differential equations. We get the transform of both differential equations.

sX1(s) - x1(0) = 3x1(s) - 3x2(s) + (2/s)

sX2(s) - x2(0) = -6x1(s) - (1/s2)

Here plug into the initial condition and simplify things a little,

(s - 3)X1(s) + 3X2(s) = (2/s) + 1 = (2 + s)/s

6X1(s) + sX2(s) = -(1/s2) - 1 = -((s2+ 1)/s2)

Here we require solving this for one of the transforms.  We'll do that by multiplying the top equation by s and the bottom with -3 and after that adding. It gives,

(s2 - 3s - 18) X1(s) = 2 + s + ((3s2+ 3)/s2)

Solving for X1 provides,

X1(s) =(s3 + 5s3 + 3)/(s2 (s + 3)( S -6))

Partial fractioning provides,

1216_LAPLACE TRANSFORMS.png

Taking the inverse transform Taking the inverse transform gives us the first solution us the first solution,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

Here to find the second solution we might go back up and remove X1 to get the transform for X2 and sometimes we would require doing that. Though, in this case notice that the second,

x2'= -6x1 - t                  ⇒                     x2 = ∫(- 6x1 - t) dt

Therefore, plugging the first solution into and integrating gives,

x2(t) = -(1/18) ∫ (133 e6t - 28 e-3t + 3t) dt

 = -(1/108) (133 e6t - 28 e-3t + 3 - 18t) + c

Here, reapplying the second initial condition to find the constant of integration provides,

-1 = -(1/108) (133 + 56) + c                ⇒                                 c = ¾

Then the second solution is,

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Therefore, putting all this together provides the solution to the system as,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Compared to the previous section the work here wasn't very bad. This won't all the time be the case of course, but you can notice that using Laplace transforms to determine systems isn't very bad in at least several cases.


Related Discussions:- Laplace transforms

Impact did this have on spanish approach their subjugation, Compare and con...

Compare and contrast the Conquest of Mexico and the Conquest of Peru in the 16 th century. How did the structures of the indigenous empires in these two regions differ? What impact

Quardrilatrel, construct aquadrilaterl PQRSin which pq=3.5cm qr=6.5cm ,p=60...

construct aquadrilaterl PQRSin which pq=3.5cm qr=6.5cm ,p=60 ,q=105 ,s=75

Mean, a data set has a mean of 3, a median of4, and a mode of 5, which numb...

a data set has a mean of 3, a median of4, and a mode of 5, which number must be in the data set 3,4,or5

Natural exponential function , Natural exponential function : There is a e...

Natural exponential function : There is a extremely important exponential function which arises naturally in several places. This function is called as the natural exponential fun

Operation research, interestind topic in operation research for doing proje...

interestind topic in operation research for doing project for msc mathematics

Relative measures of dispersion-illustration, Illustration 2 In a ...

Illustration 2 In a described farm located in the UK the average salary of the employees is £ 3500 along with a standard deviation of £150 The similar firm has a local

Concurrent deviation method, Normal 0 false false false ...

Normal 0 false false false EN-IN X-NONE X-NONE

Prove that its inclination is given by cot = b cot - a, Two stations due...

Two stations due south of a leaning tower which leans towards the north are at distances a and b from its foot.  If α ,  β be the elevations of the top of the tower from these

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd