Laplace transforms, Mathematics

Assignment Help:

Here is not too much to this section. We're here going to work an illustration to exemplify how Laplace transforms can be used to solve systems of differential equations.

Illustration:  Solve the following system.

x1'= 3x1 - 3x2 + 2;                    x1(0) = 1

x2'= -6x1 - t;                             x2(0) = -1

Solution:

First see that the system is not specified in matrix form. This is since the system won't be solved in matrix form.  Also notice that the system is nonhomogeneous.

 

We start just as we did while we used Laplace transforms to resolve single differential equations. We get the transform of both differential equations.

sX1(s) - x1(0) = 3x1(s) - 3x2(s) + (2/s)

sX2(s) - x2(0) = -6x1(s) - (1/s2)

Here plug into the initial condition and simplify things a little,

(s - 3)X1(s) + 3X2(s) = (2/s) + 1 = (2 + s)/s

6X1(s) + sX2(s) = -(1/s2) - 1 = -((s2+ 1)/s2)

Here we require solving this for one of the transforms.  We'll do that by multiplying the top equation by s and the bottom with -3 and after that adding. It gives,

(s2 - 3s - 18) X1(s) = 2 + s + ((3s2+ 3)/s2)

Solving for X1 provides,

X1(s) =(s3 + 5s3 + 3)/(s2 (s + 3)( S -6))

Partial fractioning provides,

1216_LAPLACE TRANSFORMS.png

Taking the inverse transform Taking the inverse transform gives us the first solution us the first solution,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

Here to find the second solution we might go back up and remove X1 to get the transform for X2 and sometimes we would require doing that. Though, in this case notice that the second,

x2'= -6x1 - t                  ⇒                     x2 = ∫(- 6x1 - t) dt

Therefore, plugging the first solution into and integrating gives,

x2(t) = -(1/18) ∫ (133 e6t - 28 e-3t + 3t) dt

 = -(1/108) (133 e6t - 28 e-3t + 3 - 18t) + c

Here, reapplying the second initial condition to find the constant of integration provides,

-1 = -(1/108) (133 + 56) + c                ⇒                                 c = ¾

Then the second solution is,

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Therefore, putting all this together provides the solution to the system as,

x1(t) = (1/108) (133 e6t - 28 e-3t + 3 - 18t)

x2(t) = -(1/108) (133 e6t - 56 e-3t + 18t - 81)

Compared to the previous section the work here wasn't very bad. This won't all the time be the case of course, but you can notice that using Laplace transforms to determine systems isn't very bad in at least several cases.


Related Discussions:- Laplace transforms

The index of industrial production, The index of industrial production ...

The index of industrial production This is a quantity index compiled by the government. This measures changes in the volume of production in main industries. The index is a ex

upper and lower limits, A critical dimension of the service quality of a c...

A critical dimension of the service quality of a call center is the wait time of a caller to get to a sales representative. Periodically, random samples of 6 customer calls are mea

How many hours does dee work, Susan begins work at 4:00 and Dee starts at 5...

Susan begins work at 4:00 and Dee starts at 5:00. They both finish at the similar time. If Susan works x hours, how many hours does Dee work? Since Susan started 1 hour before

How much did sally earn if she worked 48 hours, Sally gets paid x dollars p...

Sally gets paid x dollars per hour for a 40-hour work week and y dollars for every hour she works over 40 hours. How much did Sally earn if she worked 48 hours? Since she worke

Find the length of the parallelogram, The perimeter of a parallelogram is 5...

The perimeter of a parallelogram is 50 cm. The length of the parallelogram is 5 cm more than the width. Find the length of the parallelogram. Let w = the width of the parallelo

Series is converges or diverges - limit comparison test, Determine if the f...

Determine if the following series converges or diverges by using limit comparison test. Solution To make use of the limit comparison test we require to find out a seco

Rates of change or instantaneous rate of change, Rates of Change or instant...

Rates of Change or instantaneous rate of change ; Now we need to look at is the rate of change problem.  It will turn out to be one of the most significant concepts . We will c

Prerequisite, Is prerequisite multipcation or addition

Is prerequisite multipcation or addition

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd