Evaluate infinity limit into the polynomial , Mathematics

Assignment Help:

Example   Evaluate following limits.

863_limit80.png

Solution

Here our first thought is probably to just "plug" infinity into the polynomial & "evaluate" every term to finds out the value of the limit.  This is pretty simple to illustrate what each term will do in the limit and so this look likes an obvious step.

Hence, let's see what we obtain if we do that.  As x approaches infinity, then x to a power can just get larger and the coefficient on each of the term (the first and third) will jsut make the term even larger. Hence, if we look at what each of the term is doing in the limit we get the following,

2012_Limit81.png

Now, we've obtained a small, although easily fixed, problem to deal along with. Probably we are tempted to say that the answer is zero (since we have infinity minus infinity) or possibly -∞ (as we're subtracting two infinities off of one infinity).  Though, in both of the cases we'd be wrong

Infinities only don't always behave as real numbers do while it comes to arithmetic.  Without more work there is no way to know what ∞ -∞ will be and hence we really have to be careful along with this kind of problem. 

Hence, we require a way to get around this problem.  What we'll do here is factor out the largest power of x out of the whole polynomial as given,

1597_limit83.png

Now for each terms we have,

2365_limit84.png

The first limit is obviously infinity and for the second limit we'll use the fact above on the previous two terms. Hence by busing Fact 2 from the previous section we see value of the limit will be,

Fact 2

If  p ( x ) = an xn + an-1 xn -1 + ....... + a 1x + a0 is a polynomial of degree n (that means  an  ≠ 0 )  then,

959_limit85.png

What this fact is actually saying is that while we go to take a limit at infinity for a polynomial then all we have to really do is look at the term along with the largest power and asks what that term is doing in the limit as the polynomial will have the similar behavior.

Let's now move into some more complexes limits.


Related Discussions:- Evaluate infinity limit into the polynomial

Root test- sequences and series, Root Test- Sequences and Series This ...

Root Test- Sequences and Series This is the final test for series convergence that we're going to be searching for at.  Like with the Ratio Test this test will as well tell wh

Determine the length of the longer base, The longer base of a trapezoid is ...

The longer base of a trapezoid is 3 times the shorter base. The nonparallel sides are congruent. The nonparallel side is 5 cm more that the shorter base. The perimeter of the trape

Matrix, parts of matrix and functions

parts of matrix and functions

Last year a math textbook cost $54 what is this years cost, Last year, a ma...

Last year, a math textbook cost $54. This year the cost is 107 percent of what it was last year. What is this year's cost? a. $59.78 b. $57.78 c. $61.00 d. $50.22 To ?nd out

Decmiels, how do you re name percents to decimal

how do you re name percents to decimal

Calculate the area and perimeter of a parallelogram, Calculate the area and...

Calculate the area and perimeter of a parallelogram: Calculate the area and perimeter of a parallelogram with base (b) = 4´, height (h) = 3´, a = 5´ and b = 4´.  Be sure to in

Fractions, how do i multiply and divide fractions?

how do i multiply and divide fractions?

Average cost function, Average cost function : Now let's turn our attentio...

Average cost function : Now let's turn our attention to the average cost function. If C ( x ) is the cost function for some of the  item then the average cost function is,

Video games, Should video game companies continue to alter their products t...

Should video game companies continue to alter their products to include other functions, such as e-mail

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd