Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

Determine the stereo vision, Determine the stereo vision There is still...

Determine the stereo vision There is still one more major item missing, before we can look at a computer display or plot and perceive it just as we see a real object, namely th

Recurrence relation, solve the following relation by recursive method: T(n...

solve the following relation by recursive method: T(n)=2T(n^1/2)+log n

If else, design algorithm and flow chart that computes the absolute differe...

design algorithm and flow chart that computes the absolute difference of two values x and y

Data Structure, Ask consider the file name cars.text each line in the file ...

Ask consider the file name cars.text each line in the file contains information about a car ( year,company,manufacture,model name,type) 1-read the file 2-add each car which is repr

Implement an algorithm to simulate car re-organizing, Design  and implement...

Design  and implement  an algorithm  to simulate car  re-organizing of the train at the railway switching junction. You can only use stacks as the data structure to represent the t

Array and two-dimensional array, Q. Describe the term array.  How do we rep...

Q. Describe the term array.  How do we represent two-dimensional arrays in memory?  Explain how we calculate the address of an element in a two dimensional array.

2 way merge sort, merge sort process for an example array {38, 27, 43, 3, 9...

merge sort process for an example array {38, 27, 43, 3, 9, 82, 10}. If we take a closer look at the diagram, we can see that the array is recursively divided in two halves till the

Which are the two standard ways of traversing a graph, Which are the two st...

Which are the two standard ways of traversing a graph? i. The depth-first traversal   ii. The breadth-first traversal

All pairs shortest paths, N = number of rows of the graph D[i[j] = C[i][...

N = number of rows of the graph D[i[j] = C[i][j] For k from 1 to n Do for i = 1 to n Do for j = 1 to n D[i[j]= minimum( d ij (k-1) ,d ik (k-1) +d kj (k-1)

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd