Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

Binary tree construction, Construct a B+ tree for the following keys, start...

Construct a B+ tree for the following keys, starting with an empty tree.  Each node in the tree can hold a maximum of 2 entries (i.e., order d = 1). Start with an empty root nod

Implementation of multiple queues, Thus far, we have seen the demonstration...

Thus far, we have seen the demonstration of a single queue, but several practical applications in computer science needs several queues. Multi queue is data structure in which mult

Assignment, How do I submit a three page assignment

How do I submit a three page assignment

Non-recursive implementation of preorder traversal, For preorder traversal,...

For preorder traversal, in the worst case, the stack will rise to size n/2, where n refer to number of nodes in the tree. Another method of traversing binary tree non-recursively t

Grounded header link list and a circular header link list, What is the diff...

What is the difference between a grounded header link list and a circular header link list? A header linked list is a linked list which always having a special node, known as t

Circular linklist, write an algorithm to insert an element at the beginning...

write an algorithm to insert an element at the beginning of a circular linked list?

Converting an infix expression into a postfix expression, Q. Illustrate the...

Q. Illustrate the steps for converting the infix expression into the postfix expression   for the given expression  (a + b)∗ (c + d)/(e + f ) ↑ g .

Difference between prism''s and kruskal''s algorithm, Difference among Pris...

Difference among Prism's and Kruskal's Algorithm In Kruskal's algorithm, the set A is a forest. The safe edge added to A is always a least-weight edge in the paragraph that lin

Tree, tree is graph or not

tree is graph or not

Algorithm, implement multiple stack in one dimensional array

implement multiple stack in one dimensional array

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd