Stacks, Data Structure & Algorithms

Assignment Help:

Q. Explain what are the stacks? How can we use the stacks  to check whether an expression is correctly parentheses or not. For example (()) is well formed but (() or )()( is not well formed.

 

Ans:

The stack is a data structure that organizes data in a similar way one organizes a pile of coins. The new coin is all the time placed on the top and the oldest is on the bottom of the stack. When we are accessing coins, the last coin on the pile is the first coin which was removed from the stack. If we want to reach the third coin, we should remove the first two coins from the top of the stack first so that the third coin comes on the top of the stack and we can easily remove it. There is no way at all to remove a coin from anywhere other than the top of the stack.

A stack is useful whenever we need to store data and retrieve data in last in, first out order. Let us take an example the computer processes instructions using a stack in which the next instruction to execute is at the top of the stack.

To determine whether an expression is well parentheses or not:- the two conditions should be fulfilled while pushing an expression into a stack. At first, whenever an opening bracket is pushed inside a stack, there should be an occurrence a closing bracket before we reach the last symbol. Whenever a closing bracket is encountered, the top of the stack is popped until the opening bracket is popped out and discarded. If no such type of opening bracket is found and stack is made empty, then this means that the expression is not well parentheses designed.

An algorithm to check that whether an expression is correctly parenthized or not is written below:

flag=TRUE;

clear the stack;

Read a symbol from input string;

while not end of input string and flag do

{

if(symbol= '( ' or symbol= '[' or symbol = '{' )

push(symbol,stack);

else  if(symbol= ') ' or symbol= '[' or symbol =

'{' )

if stack is empty flag=false;

printf("More right parenthesis than left

parenthises");

else c=pop(stack);

match c and the input symbol; If not matched

{     flag=false;

printf("Mismatched

parenthesis");

}

Read the next input symbol;

}

if stack is empty then

printf("parentheses are balanced properly");

else

printf(" More number of left parentheses than right parentheses");

 


Related Discussions:- Stacks

Unification algorithm, i want to write code for unification algorithm with ...

i want to write code for unification algorithm with for pattern matching between two expression with out representing an expression as alist

If else, design algorithm and flow chart that computes the absolute differe...

design algorithm and flow chart that computes the absolute difference of two values x and y

Minimum cost spanning trees, A spanning tree of any graph is only a subgrap...

A spanning tree of any graph is only a subgraph that keeps all the vertices and is a tree (having no cycle). A graph might have many spanning trees. Figure: A Graph

Frequency count, what is frequency count with examble

what is frequency count with examble

Kruskal algorithm for minimum spanning, Implementations of Kruskal's algori...

Implementations of Kruskal's algorithm for Minimum Spanning Tree. You are implementing Kruskal's algorithm here. Please implement the array-based Union-Find data structure.

Infix expression to postfix form using the stack function, Q. Convert the f...

Q. Convert the following given Infix expression to Postfix form using the stack function: x + y * z + ( p * q + r ) * s , Follow general precedence rule and suppose tha

Tree traversals, There are three kinds of tree traversals, namely, Postorde...

There are three kinds of tree traversals, namely, Postorder , Preorder and Inorder. Preorder traversal: Each of nodes is visited before its children are visited; first the roo

The searching technique that takes o (1) time to find a data, The searching...

The searching technique that takes O (1) time to find a data is    Hashing is used to find a data

State about the bit string, State about the Bit String Carrier set of...

State about the Bit String Carrier set of the Bit String ADT is the set of all finite sequences of bits, including empty strings of bits, which we denote λ. This set is {λ, 0

Determine the comparison of gouraud and phong shading, Comparison of Gourau...

Comparison of Gouraud and Phong Shading Phong shading requires more calculations, but produces better results for specular reflection than Gouraud shading in the form of more r

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd