Rotation about the origin - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Rotation about the origin - 2-d and 3-d transformations

Specified a 2-D point P(x,y), which we need to rotate, along with respect to the origin O. The vector OP has a length 'r' and making a +ive or anticlockwise angle φ with respect to x-axis.

 Suppose P' (x'y') be the outcome of rotation of point P by an angle θ regarding the origin that is demonstrated in Figure 3.

1337_Rotation about the origin - 2-d and 3-d transformations.png

P(x,y) = P(r.cos φ,r.sin φ)

P'(x',y')=P[r.cos(φ+ θ),rsin(φ+ θ)]

The coordinates of P' are as:

x'=r.cos(θ+ φ)=r(cos θ cos φ -sin θ sin φ)

=x.cos θ -y.sin θ     (where x=rcosφ and y=rsinφ)

As like;

y'= rsin(θ+ φ)=r(sinθ cosφ + cosθ.sinφ)

=xsinθ+ycosθ

Hence,

1628_Rotation about the origin - 2-d and 3-d transformations 1.png

Hence, we have acquired the new coordinate of point P after the rotation. Within matrix form, the transformation relation among P' and P is specified by:

346_Rotation about the origin - 2-d and 3-d transformations 2.png

There is P'=P.Rq                                               ---------(5)

Here P'and P represents object points in 2-Dimentional Euclidean system and Rq is transformation matrix for anti-clockwise Rotation.

In terms of Homogeneous Coordinates system, equation (5) becomes as

2409_Rotation about the origin - 2-d and 3-d transformations 3.png

There is P'h=Ph.Rq,                                                     ---------(7)

Here P'h and Ph   represent object points, after and before needed transformation, in Homogeneous Coordinates and Rq is termed as homogeneous transformation matrix for anticlockwise  or =ive Rotation. Hence, P'h, the new coordinates of a transformed object, can be determined by multiplying previous object coordinate matrix, Ph, along with the transformation matrix for Rotation Rq.

Keep in mind that for clockwise rotation we have to put q = -q, hence the rotation matrix Rq , in Homogeneous Coordinates system, becomes:

1007_Rotation about the origin - 2-d and 3-d transformations 4.png


Related Discussions:- Rotation about the origin - 2-d and 3-d transformations

Projections - 3d primitive and composite transformations, Projections W...

Projections When all display devices are 2D, you need to devise methods that give a realistic view of a 3D scene onto 2D display. With more and more devices coming in the marke

Important points about the illumination model, Important points about the i...

Important points about the illumination Model An illumination model is also termed as lighting model and sometimes considered to as shading model, that is utilized to compute

Common transformation for parallel projection-transformation, Derive the co...

Derive the common transformation for parallel projection into a specified view plane, here the direction of projection d=aI+bJ+cK is along the normal N=n1I+n2J+n3K along with the r

Basic graphics and mouse events, For this assignment, you will program a ga...

For this assignment, you will program a game called Pig. Pig is a two-player game where players compete to be the first to reach (or surpass) 100 points. Pig usually involves playe

Example of bezier curves - modeling and rendering, To prove: P (u = 0) = p0...

To prove: P (u = 0) = p0 Solution : = p 0 B n,0 (u) + p 1 B n, 1 (u) +...... + p n B n, n (u)...............(1)  B n,i (u) = n c i u i (1 - u) n-i B n,0

Write a code to continuously rotate square about pivot point, Write a code ...

Write a code to continuously rotate a square about a pivot point.    #include   static GLfloat rotat=0.0;   void init(void); void display(void); void reshape(int w

Explain difference between impact and non-impact printers, What is the diff...

What is the difference between impact and non-impact printers?  Impact printer press produced character faces against an inked ribbon on to the paper. A line printer and dot-ma

Define advanced graphics port, Q. Define Advanced Graphics Port? AGP si...

Q. Define Advanced Graphics Port? AGP signify Advanced (or Accelerated) Graphics Port. It's a connector standard defining a high speed bus connection between the microprocessor

Handling mouse input, When you set up your project, create the class as an ...

When you set up your project, create the class as an "ACM Graphics Program", rather than a plain class. This will perform the necessary preparations for you to use mouse input in y

Transformation, determine the form of the transformation matrix for a refle...

determine the form of the transformation matrix for a reflection about an arbitrary line with equation y=mx+b.

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd