Rotation about the origin - 2-d and 3-d transformations, Computer Graphics

Assignment Help:

Rotation about the origin - 2-d and 3-d transformations

Specified a 2-D point P(x,y), which we need to rotate, along with respect to the origin O. The vector OP has a length 'r' and making a +ive or anticlockwise angle φ with respect to x-axis.

 Suppose P' (x'y') be the outcome of rotation of point P by an angle θ regarding the origin that is demonstrated in Figure 3.

1337_Rotation about the origin - 2-d and 3-d transformations.png

P(x,y) = P(r.cos φ,r.sin φ)

P'(x',y')=P[r.cos(φ+ θ),rsin(φ+ θ)]

The coordinates of P' are as:

x'=r.cos(θ+ φ)=r(cos θ cos φ -sin θ sin φ)

=x.cos θ -y.sin θ     (where x=rcosφ and y=rsinφ)

As like;

y'= rsin(θ+ φ)=r(sinθ cosφ + cosθ.sinφ)

=xsinθ+ycosθ

Hence,

1628_Rotation about the origin - 2-d and 3-d transformations 1.png

Hence, we have acquired the new coordinate of point P after the rotation. Within matrix form, the transformation relation among P' and P is specified by:

346_Rotation about the origin - 2-d and 3-d transformations 2.png

There is P'=P.Rq                                               ---------(5)

Here P'and P represents object points in 2-Dimentional Euclidean system and Rq is transformation matrix for anti-clockwise Rotation.

In terms of Homogeneous Coordinates system, equation (5) becomes as

2409_Rotation about the origin - 2-d and 3-d transformations 3.png

There is P'h=Ph.Rq,                                                     ---------(7)

Here P'h and Ph   represent object points, after and before needed transformation, in Homogeneous Coordinates and Rq is termed as homogeneous transformation matrix for anticlockwise  or =ive Rotation. Hence, P'h, the new coordinates of a transformed object, can be determined by multiplying previous object coordinate matrix, Ph, along with the transformation matrix for Rotation Rq.

Keep in mind that for clockwise rotation we have to put q = -q, hence the rotation matrix Rq , in Homogeneous Coordinates system, becomes:

1007_Rotation about the origin - 2-d and 3-d transformations 4.png


Related Discussions:- Rotation about the origin - 2-d and 3-d transformations

Filling algorithm, Analise floodfill algirithm & boundryfillalgorithim

Analise floodfill algirithm & boundryfillalgorithim

Z-buffer algorithm, How to implement z-buffer algorithm using C programming...

How to implement z-buffer algorithm using C programming

Midpoint circle generation algorithm, Midpoint circle generation algorithm ...

Midpoint circle generation algorithm This makes use of a circle function. Based on this circle function, a decision parameter is created which is used to decide successive pixe

Assumptions for area subdivision method, Assumptions for Area Subdivision M...

Assumptions for Area Subdivision Method a) ¾   Plane of projection is z=0 plane b) ¾ Orthographic parallel projections c) ¾   Direction of projection as d= (0,0,-1) d

What are the important applications of computer graphics, Can you list at l...

Can you list at least three important applications of computer graphics? There are lots of interesting applications of computer graphics. Three common applications are compute

Advantages of scan line algorithm, Advantages of Scan line Algorithm:  ...

Advantages of Scan line Algorithm:   This time and always we are working along with one-dimensional array as: x[0...x_max] for color not a 2D-array like in Z-buffer algorithm.

Image - based rendering, Explore and understand light field. Checking out o...

Explore and understand light field. Checking out one of the image libraries. 1. You can modify existing source code, or develop your own to achieve light field rendering; 2.

Write a c code for generating concentric circles, Write a C code for genera...

Write a C code for generating concentric circles.  Put the circle function circleMidpoint()in a for loop  as follows: for( int radius = MinRadius; radius circleMidpoint(i

Bezier curves, find out points to the given control points

find out points to the given control points

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd