Rolles theorem, Mathematics

Assignment Help:

Rolle's Theorem

 Assume f(x) is a function which satisfies all of the following.

1. f(x) is continuous in the closed interval [a,b].

2. f(x) is differentiable in the open interval (a,b).

3. f(a)  = f(b)

So, there is a number c as a < c < b and f′(c) = 0. Or, though f(x) has a critical point in (a,b).

 


Related Discussions:- Rolles theorem

Rlc circuit, State clearly that the current in an RLC circuit with an AC so...

State clearly that the current in an RLC circuit with an AC source with and without the use of complex variables

Find the quadratic polynomial, Find the Quadratic polynomial whose sum and ...

Find the Quadratic polynomial whose sum and product of zeros are √2 + 1, 1/ √2 + 1 Ans:    sum = 2  √2 Product = 1 Q.P = X 2 - (sum) x + Product ∴ x 2 - (2 √2 )

What is the continuously compounded forward rate, At time t an investor s...

At time t an investor shorts a $1 face value zero coupon bond that matures at time T = t and uses the entire proceeds to purchase a zero coupon bond that matures at time

Scale Drawing, Model of 180 meter tall building using a scale of 1.5 centim...

Model of 180 meter tall building using a scale of 1.5 centimeters = 3.5 meters. How tall will the model be?

Volumes of solids of revolution - method of rings, Volumes of Solids of Rev...

Volumes of Solids of Revolution / Method of Rings In this section we will begin looking at the volume of solid of revolution. We have to first describe just what a solid of rev

Fractions, you need to cut the proper to cut 2''*4*8 long studs to the prop...

you need to cut the proper to cut 2''*4*8 long studs to the proper length to make a finished wall 8" in height underneath the studs there will be a double plate made up of two piec

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd