Related rates of differentiation., Mathematics

Assignment Help:

Related Rates : In this section we will discussed for application of implicit differentiation. 

For these related rates problems usually it's best to just see some problems and see how they work.

Example: Air is pumped in a spherical balloon at a rate of 5 cm3/min. Find out the rate at which the radius of the balloon is raising while the diameter of the balloon is 20 cm.

Solution : The first thing that we'll have to do here is to recognize what information that we've been provided and what we desire to find. Previous to we do that let's notice that both of the volume of the balloon & the radius of the balloon will differ with time and thus are really functions of time, i.e. V (t ) and r (t ) .

We know that air is being pumped in the balloon at a rate of 5 cm3/min. It is the rate on which the volume is raising.  Recall that rates of change are derivatives and thus we know that,

V ′ (t ) = 5

We desire to find out the rate at which the radius is changing.  Again, rates are derivatives and thus it looks like we desire to determine,

                      r′ (t ) = ?            when           r (t ) = d /2= 10 cm

Note that we required converting the diameter to a radius.

Now that we've recognized what we have been given and what we desire to determine we have to relate these two quantities to each of other.  In this case we can relate the volume and the radius along with the formula for the volume of any sphere.

                                                        V (t ) = 4/3 ∏ [r (t )]3

As in the earlier section while we looked at implicit differentiation, typically we will not use the  (t ) part of things in the formulas, however since this is the first time through one of these we will do that to remind ourselves that they are actually functions of t.

Now we don't in fact want a relationship among the volume & the radius.  What we actually desire is a relationship among their derivatives.  We can accomplish this by differentiating both of the sides with respect to t.  In other terms, we will have to do implicit differentiation on the above formula. By doing this we get,

                                                             V ′ = 4 ∏ r 2 r′

Note as well that at this point we went ahead and dropped the (t ) from each terms.  Now all that we have to do is plug in what we know and solve out for what we desire to find.

5 = 4 ∏ (102 ) r′           ⇒ r′ = 1 /80 ∏ cm/min

We can get the units of the derivative through recalling that,

 r′ = dr /dt


Related Discussions:- Related rates of differentiation.

How to raise powers of monomials, How to raise Powers of Monomials ? To ...

How to raise Powers of Monomials ? To raise a monomial to a certain power: Step 1: Place the entire monomial inside parentheses, and place the desired power outside the paren

Prove that three times the sum of the squares, Prove that three times the s...

Prove that three times the sum of the squares of the sides of a triangle is equal to four times the sum of the squares of the medians of the triangle. Ans:    To prove 3(AB 2

Calculus Homework, Find the slope of the line tangent to the graph of f(x)=...

Find the slope of the line tangent to the graph of f(x)= 3-2ln(2x^2+4) at the point (4, F(4))

Why is vector division undefined, Division basically refers to multiplicati...

Division basically refers to multiplication of reciprocal. For example a/b is same as a*1/b or we can say, is same as a*b -1 , which is "a" multiplied to the inverse of "b". There

Innovation, In the innovations algorithm, show that for each n = 2, the inn...

In the innovations algorithm, show that for each n = 2, the innovation Xn - ˆXn is uncorrelated with X1, . . . , Xn-1. Conclude that Xn - ˆXn is uncorrelated with the innovations X

Describe three ways to write negative fractions, Describe Three Ways to Wri...

Describe Three Ways to Write Negative Fractions? There are three different ways that a negative fraction can be written. They are all represent the same value. 1. The negative

Equal groupings -categories of multiplication, Equal groupings - when we...

Equal groupings - when we want to find how many objects there are in several equal-sized sets. (e.g., if there are 3 baskets, each with 4 bananas, 4 oranges and 4 apples, respec

Definition and fact of the shape of a graph, Definition 1.   Given any ...

Definition 1.   Given any x 1  & x 2   from an interval  I with x 1 2  if f ( x 1 ) 2 ) then f ( x ) is increasing on I. 2.   Given any x 1  & x 2  from an interval

Write Your Message!

Captcha
Free Assignment Quote

Assured A++ Grade

Get guaranteed satisfaction & time on delivery in every assignment order you paid with us! We ensure premium quality solution document along with free turntin report!

All rights reserved! Copyrights ©2019-2020 ExpertsMind IT Educational Pvt Ltd